Effects of Green Pepper (Capsicum annuum var.) on Antioxidant Activity and Induction of Apoptosis in Human Breast Cancer Cell Lines

품종별 청고추의 항산화 효과 및 유방암 세포주에서의 세포 사멸 연구

  • Yoon, Hyo-Jin (Department of Food and Nutrition, Seoul National University) ;
  • Lee, Seul (Department of Food and Nutrition, Seoul National University) ;
  • Hwang, In-Kyeong (Department of Food and Nutrition, Seoul National University)
  • 윤효진 (서울대학교 식품영양학과) ;
  • 이슬 (서울대학교 식품영양학과) ;
  • 황인경 (서울대학교 식품영양학과)
  • Received : 2012.06.21
  • Accepted : 2012.10.18
  • Published : 2012.12.31


This study investigated flavonoid, total phenol, total flavonoid content, antioxidant and antiproliferative activity on human breast cancer cells (MCF-7, MDA-MB-231). Four varieties of Korean green peppers (KP: kkuri pepper, PP: phut pepper, CP: cheongyang pepper, OP: ohi pepper) and one foreign green pepper (JP: jalapeno) were used. The contents of luteolin, quercetin and apigenin, which are abundant flavonoids in green pepper, were the highest in KP. Also, the contents of total phenol, and total flavonoids were the highest in KP, followed by CP, JP, PP, and OP (KP: total phenol $13.29{\pm}0.45$ mg GAE/g D.W., total flavonoid $7.02{\pm}0.13$ mg QE/g D.W. In DPPH ABTS radical-scavenging activity, KP showed the most potent antioxidant activity. In the result of viability in human breast cancer cells, KP had the highest antiproliferative effect. These results suggest that green peppers have significant antioxidant activity and can be a possible candidate for treatment of breast cancer.


green pepper;flavonoid;antioxidant;antiproliferative;apoptosis


  1. Surh YJ, Lee SS. Capsaicin, a double-edged sword: toxicity, metabolism, and chemopreventive potential. Life Sci. 56: 1845-1855 (1995)
  2. Song W, Derito CM, Liu K, He S, Liu RH. Cellular antioxidant activity of common vegetables. J. Agr. Food Chem. 58: 6621-6629 (2010)
  3. Kim JP, Kim EH, Kim SU, Kwon TK, Choi KS. Capsaicin sensitizes malignant glioma cells to TRAIL-mediated apoptosis via DR5 upregulation and survivin downregulation. Carcinogenesis. 31: 367-375 (2010)
  4. Surh YJ, Han SS, Keum YS, Seo HJ, Lee SS. Inhibitory effects of curcumin and capsaicin on phorbol ester-induced activation of enkaryotic transcription factors, NF-Kappa and AP-1. Biofactors. 107-112 (2000)
  5. Dixon RA. The phytoalex in response: elicitation, signalling and control of host gene expression. Biological Reviews. 61: 239-291 (1986)
  6. Laks PE, Pruner MS. Flavonoid biocides: structure/activity relations of flavonoid phytoalex in analogues. Phytochemistry. 28: 87-91 (1989)
  7. Keller RB. Flavonoids: biosynthesis, biological effects and dietary sources. Nova science publishers. Hauppauge, NY, USA. pp. 24-52 (2009)
  8. Havesteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 32: 1141-1148 (1983)
  9. Verma AK, Johnson JA, Gould MN. Inhibition of 7,12-dimethylbenz( a)anthracene-and af-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin. Cancer Res. 48: 5754-5758 (1988)
  10. Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, Sakai T, Nishino H, Kawai K. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct. 15: 393-401 (1990)
  11. Laughton MJ, Evans PJ, Moroney MA, Hoult JRS, Halliwell B. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives: relationship to antioxidant activity and to iron ion-reducing ability. Biochemical Pharmacology. 42: 1673-1681 (1991)
  12. Ratna WN, Simonelli JA. The action of dietary phytochemicals quercetin, catechin, resveratrol and naringenin on estrogen-mediated gene expression. Life Sci. 70: 1577-1589 (2002)
  13. Schlachterman A, Valle F, Wall KM, Azios NG, Castillo L, Morell L, Washington AV, Cubano LA, Dharmawardhane SF. Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model. Transl. Oncol. 1: 19-27 (2008)
  14. So FV, Guthrie N, Chambers AF, Carroll KK. Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett. 112: 127-133 (1997)
  15. Baila JC, Varnata F, Nicolasb JC, Habriouxa G. Estrogenic and antiproliferative activities on MCF-7human breast cancer cells by flavonoids. Cancer Lett. 130(1-2): 209-216 (1998)
  16. Wang L, Ling Y, Chen Y, Li CL, Feng F, You QD, Lu L, Guo QL. Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breastcancer cells. Cancer Lett. 297: 42-48 (2010)
  17. Choi EJ, Kim GH. Apigenin induces apoptosis through a mitochondria/ caspase-pathway in human breast cancer MDA-MB-453 cells. J. Clin. Biochem. Nutr. 44: 260-265 (2009)
  18. National Cancer Information Center. Cancer incidence. Available from: Accessed Jun. 6, 2012.
  19. Stewart BW, Kleihues P. World cancer report lyon: WHO/International agency for research on cancer. 20: 175-178 (2003)
  20. Jemal A, Murray T, Ward E, Samuels A, Ram C, Ghafoor A, Feuer E, Thun M Cancer statistics. CA-Cancer J. Clin. 55: 10-30 (2005)
  21. Ministry of Health & Welfare. Annual report of the central cancer registry in Korea. Ministry of Health & Welfare, Seoul, Korea. pp. 5-7 (2005)
  22. The department of health care services (DHCS). Breast cancer review: Detection and screening. Available from Accessed Jun. 20, 2012.
  23. Jhons T, Romeo JT. Functionality of food phytochemicals, Recent Adv. phytochem. 33: 133-159 (1999)
  24. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell. Dev. Biol. 15: 269-290 (1999)
  25. Reed JC. Double identity for proteins of the Bcl-2 family. Nature. 387: 773-776 (1997)
  26. Schuler M, Green DR. Mechanisms of p53-dependent. apoptosis. Biochem. Soc. Trans. 29: 684-688 (2001)
  27. Reed JC, Korsmeyer SJ, Xiao Y, Yang E, Zha J, Sedlak T, Oltvai Z. Bcl-2 and the regulation of programmed cell death. Cell. 74: 609619 (1994)
  28. Michael GL, Hertog ML, Hollman P, Venema DP. Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J. Agric. Food Chem. 40: 1591-1598 (1992)
  29. Singleton VL, Joseph A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Viticult. 16(3): 144-158 (1965)
  30. Meda A. Lamien CE, Romito M, Millogo J, Nacoulma OG. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavening activity. Food Chem. 91(3): 571-577 (2005)
  31. Berg RVD, Haenen GRMM, Berg HVD, Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66(4): 511-517 (1999)
  32. Lee Y, Howard LR, Villalon B. Flavonoids and antioxidant activity of fresh pepper (Capsicum annuum) cultivars. J. Food Sci. 60: 473-476 (1995)
  33. Kwon JE. Determination of biological activity on methanol extracts of capsicum annuum L. from different varieties. MS thesis, Gyeongbuk National University, Daegu, Korea (2011)
  34. Conforti F, Statti GA, Menichini F. Chemical and biological variability of hot pepper fruits (Capsicum annuum var. acuminatum L.) in relation to maturity stage. Food Chem. 102: 1096-1104 (2007)
  35. Yoo KM, Lee KW, Park JB, Lee HJ, Hwang IK. Variation in major antioxidants and total antioxidant activity of Yuzu (Citrus junos Sieb ex Tanaka) during maturation and between cultivars. J. Agric. Food Chem. 52: 5907-5913 (2004)
  36. Cho BC. The effects of growing periods and climatic factors on the characteristics red pepper (Capsicum annuum L.). PhD thesis, Korea University, Seoul, Korea (2010)
  37. Mozafar A. Plant vitamins: agronomic, physiological and nutritional aspects. CRC press, Boca Raton, Fl, USA. pp. 2-5 (1994)
  38. Sviribeley JL, Szent-Gyorgyi A. The chemical structure of vitamin C. Biochem. J. 27: 100-104 (1933)
  39. Markus F, Daood HG, Kapitny J, Biacs PA. Change in the carotenoid and antioxidant content of spice red pepper (paprika) as a function of ripening and some technological factors. J. Agric. Food Chem. 47: 100-107 (1999)
  40. Pellegrini N, Serafini M, Colombi B, Rio DD, Salvatore S, Bianchi M, Brighenti F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 133: 2812-2819 (2003)
  41. Stoner GD, Mukhtar H. Polyphenols as cancer chemopreventive agents. J. Cell Biochem. 59: 169-180 (1995)
  42. Vijayaa K, Ananthan S, Nalinib R. Antibacterialeffect of theaflavin, polyphenon 60 (Camellia sinensis) and Euphorbia hirta on Shigella spp.-a cell culture study. J. Ethnopharmacol. 49: 115-118 (1995)
  43. Hattori M, Kusumoto IT, Namba T, Ishigami T, Hara Y. Effect of tea polyphenols on glucosyltransferase from streptococcus mutans. Chem. Pharm. Bulletin. 38: 717-720 (1990)
  44. Khnau J. The flavonoids: a class of semi-essential food components: their role in human nutrition. World Rev. Nutr. Diet. 24: 117-191 (1976)
  45. Chun OK, Kim DO, Smith N, Schroeder D, Han JT, Lee CY. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food Agr. 85: 1715-1724 (2005)
  46. Winston GW, Giulioz RT. Prooxidant and antioxidant in aquatic organisms. Aquat. Toxicol. 19: 137-161 (1991)
  47. Chen L, Hwang JE, Gu KM, Kim JH, Choi BR, Song KS, Park YM, Kang YH. Comparative study of antioxidant effects of five korean varieties red pepper (Capsicum annuum L) extracts from various parts including placenta, stalk, and pericarp. Food Sci. Biotechnol. 21: 715-721 (2012)
  48. Bor JY, Chen HY, Yen GC. Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. J. Agric. Food Chem.. 54: 1680-1686 (2006)
  49. Yoo KM, Kim DO, Lee CY. Evaluation of different methods of antioxidant measurement. Food Sci. Biotechnol. 16: 177-182 (2007)
  50. Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Bio. Med. 16: 845-850 (1994)
  51. Lee SN, Kang KJ. The effect of blueberry extract on gene expressions related to apoptosis in human breast cancer MCF7 cells. J. East Asian Soc. Dietary Life. 20: 30-36 (2010)
  52. Levy SM, Herberman RB, Maluish AM. Prognostic risk assessment in primary breast cancer by behavioral and immunological parameters. Health Psychol. 4: 99-113 (1985)
  53. Lerner LJ, Jordan VC. Development of antiestrogens and their use in breast cancer: eighth cain memorial award lecture. Cancer Res. 50: 4177-4189 (1990)
  54. Rochefort H, Capony F, Garcia M, Cavaills V, Freiss G, Chambon M, Morisset M, Vignon F. Estrogen-induced lysosomal proteases secreted by breast cancer cells: A role in carcinogenesis?. J. Cell. Biochem. 35: 17-29 (1987)
  55. Kwon SH, Kim CN, Kim CY, Kwon ST, Park KM, Hwangbo S. Antitumor activities of protein-bound polysaccharide extracted from mycelia of mushroom. Korean J. Food Nutr. 16: 15-21 (2003)
  56. Chiarugi V, Magnelli L, Turchetti A, Cinelli M, Cavari S, Ruggiero M. Cell survival and death programmes. Pharmacol. Res. 29: 101-110 (1994)
  57. Nagata S. Apoptosis by death factor. Cell. 88: 355-365 (1997)
  58. Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Gene Dev. 13: 1899-1911 (1999)
  59. Gorman A, Hirt U, Orrenius S, Ceccatelli S. Dexamethasone pretreatment interferes with apoptotic death in glioma cells. Neuroscience. 96: 417-425 (2000)
  60. Ruvo C, Amodio R, Algeri S, Martelli N, Intilangelo A, D'Ancona G, Esposito E. Nutritional antioxidants as antidegenerative agents, Int. J. Devl. Neuroscience. 18: 359-366 (2000)
  61. MacDonald-Wicks LK, Wood LG, Garg ML. Methodology for the determination of biological antioxidant capacity in vitro: a review. J. Sci. Food Agr. 86: 2046-2056 (2006)
  62. Biglari F, Abbas FM, AlKarkhi AM. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 107: 1636-1641 (2008)
  63. Kim SM, Cho YS, Sung SK, Lee IG, Lee SH, Kim DG. Antioxidative and nitrite scavenging activity of pine needle and green tea extracts. Korean J. Food Sci. Ani. Resour. 22: 13-19 (2002)
  64. Sheikh MS, Shao AM, Li XS, Ordonez JV, Conley BA, Wu S, Dawson MI, Han QX, Chao WR, Quick T, Niles RM, Fontana JA. N-(4-hydroxyphenyl)retinamide (4-HPR)-mediated biological actions involve retinoid receptor-independent pathways in human breast carcinoma. Carcinogenesis. 16: 2477-2486 (1995)
  65. Wanga X, Yuana S, Wanga J, Lina P, Liub G, Lua Y, Zhanga J, Wangc W, Weid Y. Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicol. Appl. Pharm. 215: 166-178 (2006)
  66. Stoner GD. Polyphenols as cancer chemopreventive agents. J. Cell. Biochem. 59: 169-180 (2004)

Cited by

  1. Comparison Study of Three Varieties of Red Peppers in Terms of Total Polyphenol, Total Flavonoid Contents, and Antioxidant Activities vol.45, pp.5, 2016,
  2. Cytotoxicity of Extracts from Korean Pepper (Capsicum annuum L.) by Extraction Solvents and Plant Parts vol.22, pp.5, 2014,
  3. Physicochemical characteristics and antioxidant activity of the organic green peppers vol.22, pp.4, 2015,
  4. Antioxidant activity and PC12 cell protective effect of onion flesh and peel(Allium cepa L.) fraction on oxidative stress vol.49, pp.2, 2015,