Conditional Integral Transforms on a Function Space

Cho, Dong Hyun

  • Received : 2010.03.03
  • Accepted : 2011.09.23
  • Published : 2012.12.23


Let $C^r[0,t]$ be the function space of the vector-valued continuous paths $x:[0,t]{\rightarrow}\mathbb{R}^r$ and define $X_t:C^r[0,t]{\rightarrow}\mathbb{R}^{(n+1)r}$ and $Y_t:C^r[0,t]{\rightarrow}\mathbb{R}^{nr}$ by $X_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}),\;x(t_n))$ and $Y_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}))$, respectively, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n=t$. In the present paper, using two simple formulas for the conditional expectations over $C^r[0,t]$ with the conditioning functions $X_t$ and $Y_t$, we establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman transform for the function of the form $${\exp}\{{\int_o}^t{\theta}(s,\;x(s))\;d{\eta}(s)\}{\psi}(x(t)),\;x{\in}C^r[0,t]$$ where ${\eta}$ is a complex Borel measure on [0, t] and both ${\theta}(s,{\cdot})$ and ${\psi}$ are the Fourier-Stieltjes transforms of the complex Borel measures on $\mathbb{R}^r$.


Analogue of Wiener measure;Conditional Feynman integral;Conditional Fourier-Feynman transform;Conditional Wiener integral;Simple formula for conditional Wiener integral


  1. R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Lecture Notes in Mathematics 798, Springer, Berlin-New York, 1980.
  2. K. S. Chang, D. H. Cho and I. Yoo, Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space, Czechoslovak Math. J., 54(129)(2004), no. 1, 161-180.
  3. D. H. Cho, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space: an Lp theory, J. Korean Math. Soc., 41(2004), no. 2, 265-294.
  4. D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications, Trans. Amer. Math. Soc., 360(2008), no. 7, 3795-3811.
  5. D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications II, Czechoslovak Math. J., 59(134)(2009), no. 2, 431-452.
  6. M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc., 39(2002), no. 5, 801-819.
  7. G. W. Johnson and M. L. Lapidus, Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman's operational calculus, Mem. Amer. Math. Soc., 62(1986), no. 351.
  8. H. H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, 463, Springer-Verlag, Berlin-New York, 1975.
  9. K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc., 354(2002), no. 12, 4921-4951.
  10. J. Yeh, Inversion of conditional expectations, Pacific J. Math., 52(1974), 631-640.
  11. J. Yeh, Inversion of conditional Wiener integrals, Pacific J. Math., 59(1975), no. 2, 623-638.
  12. J. Yeh, Transformation of conditional Wiener integrals under translation and the Cameron-Martin translation theorem, Tohoku Math. J., 30(2)(1978), no. 4, 505-515.


Supported by : Kyonggi University