DOI QR코드

DOI QR Code

Isogeometric Shape Sensitivity Analysis in Generalized Curvilinear Coordinate Systems

일반 곡면 좌표계에서 구현된 아이소-지오메트릭 형상 설계민감도 해석

  • Ha, Youn Doh (Dept. of Naval Architecture, Kunsan National University) ;
  • Yoon, Minho (Dept. of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Cho, Seonho (Dept. of Naval Architecture and Ocean Engineering, Seoul National University)
  • 하윤도 (군산대학교 조선공학과) ;
  • 윤민호 (서울대학교 조선해양공학과) ;
  • 조선호 (서울대학교 조선해양공학과)
  • Received : 2012.11.07
  • Accepted : 2012.12.02
  • Published : 2012.12.31

Abstract

Finite element analysis is to approximate a geometry model developed in computer-aided design(CAD) to a finite element model, thus the conventional shape design sensitivity analysis and optimization using the finite element method have some difficulties in the parameterization of geometry. However, isogeometric analysis is to build a geometry model and directly use the functions describing the geometry in analysis. Therefore, the geometric properties can be embedded in the NURBS basis functions and control points so that it has potential capability to overcome the aforementioned difficulties. In this study, the isogeometric structural analysis and shape design sensitivity analysis in the generalized curvilinear coordinate(GCC) systems are discussed for the curved geometry. Representing the higher order geometric information, such as normal, tangent and curvature, yields the isogeometric approach to be the best way for generating exact GCC systems from a given CAD geometry. The developed GCC isogeometric structural analysis and shape design sensitivity analysis are verified to show better accuracy and faster convergency by comparing with the results obtained from the conventional isogeometric method.

유한요소 해석법에서는 CAD 모델을 유한요소 모델로 이산화하기 때문에 CAD와 해석 모델의 차이로 인해 형상 설계민감도 및 최적설계에서 설계영역 매개 변수화에 어려움이 있다. 반면에 아이소-지오메트릭 해석법은 CAD 모델과 동일한 NURBS 기저함수와 조정점을 해석에 이용함으로써 설계의 기하학적 변화를 해석모델에 직접적으로 표현할 수 있기 때문에 전술된 여러 어려움들을 개선할 수 있다. 본 연구에서는 일반 곡면 좌표계에서 아이소-지오메트릭 해석 모델을 정식화하여 곡면 부재에 대한 구조해석과 형상 설계민감도 해석을 수행하였다. 아이소-지오메트릭 해석에서는 법선, 접선, 곡률 등과 같은 고차의 기하학적 정보들이 엄밀하게 표현될 수 있기 때문에 주어진 CAD 모델에 적합한 일반 곡면 좌표계를 생성해 낼 수 있다. 기존의 아이소-지오메트릭 구조해석 및 설계민감도 해석 결과와 비교하여 제안된 해석방법론이 더 정확한 해와 더 빠른 수렴성을 보이는 것을 확인하였다.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. Ahn, S., Kim, M.G., Cho, S. (2010) Isogeometric Shape Design Optimization of Structures under Stress Constraints, Journal of Computational Structural Engineering, 23(4), pp.275-282.
  2. Benson, D.J., Bazilevs, Y., Hsu, M.C., Hughes, T.J.R. (2010) Isogeometric Shell Analysis: The Reissner-Mindlin Shell, Computer Methods in Applied Mechanics and Engineering, 199, pp.276-289.
  3. Cho, M., Roh, H.Y. (2003) Development of Geometrically Exact New Shell Elements Based on General Curvilinear Coordinates, International Journal for Numerical Methods in Engineering, 56(1), pp.81-115. https://doi.org/10.1002/nme.546
  4. Cho, S., Ha, S.H. (2009) Isogeometric Shape Design Optimization: Exact Geometry and Enhanced Sensitivity, Structural and Multidisciplinary Optimization, 38(1), pp.53-70. https://doi.org/10.1007/s00158-008-0266-z
  5. Ha, S.H., Cho, S. (2007) Shape Design Sensitivity Analysis Using Isogeometric Approach, Journal of Computational Structural Engineering, 20(3), pp.339-345.
  6. Ha, S.H., Cho, S. (2008) Shape Design Optimization Using Isogeometric Analysis, Journal of Computational Structural Engineering, 21(3), pp.233-238.
  7. Haug, E.J., Choi, K.K., Komkov, V. (1986) Design Sensitivity Analysis of Structural Systems, Academic Press, New York.
  8. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y. (2005) Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement, Computer Methods in Applied Mechanics and Engineering, 194, pp.4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  9. Piegl, L., Tiller, W. (1997) The NURBS Book (Monographs in Visual Communication), 2nd edn., Springer-Verlag, New York.
  10. Yoon, M., Koo, B.Y., Ha, S.H., Cho, S. (2010) Isogeometric Shape Design Optimization of Structures Subjected to Design-dependent Loads, Journal of Computational Structural Engineering, 24(1), pp.1-7.