DOI QR코드

DOI QR Code

Role of tea catechins in prevention of aging and age-related disorders

  • Received : 2011.07.02
  • Accepted : 2012.02.29
  • Published : 2012.02.29

Abstract

Tea polyphenols especially catechins have long been studied for their antioxidant and radical scavenging properties. Scientists throughout the world have investigated the usefulness of the regular green tea consumption in several disease conditions. In-vitro and in-vivo experiments on catechins especially epigallocatechingallate have revealed a significant role in many ways. Reactive oxygen species have been increasingly implicated in the pathogenesis of many diseases and important biological processes. Toxic effects of these oxidants, commonly referred to as oxidative stress, can cause cellular damage by oxidizing nucleic acids, proteins, and membrane lipids. Oxidative stress has been related to aging and age related disorders. It is found that in a wide variety of pathological processes, including cancer, atherosclerosis, neurological degeneration, Alzheimer's disease, ageing and autoimmune disorders, oxidative stress has its implications. Catechins have been reported to be useful in combating aging and age related disorders like cancer, cardiovascular disorders and neurodegenerative diseases. In this mini review we will discuss such studies done across the globe.

References

  1. Ahmad N, Gupta S, Mukhtar H. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells. Arch Biochem Biophys. 2000;376(2):338-346. https://doi.org/10.1006/abbi.2000.1742
  2. Andriollo-Sanchez M, Hininger-Favier I, Meunier N, Venneria E, O'Connor JM, Maiani G, Coudray C, Roussel AM. Age-related oxidative stress and antioxidant parameters in middle-aged and older European subjects: the ZENITH study. Eur J Clin Nutr.2005;59(Suppl 2):S58-62. https://doi.org/10.1038/sj.ejcn.1602300
  3. Arts IC, Hollman PC, Kromhout D. Chocolate as a source of tea flavonoids. Lancet 1999;354(9177):488. https://doi.org/10.1016/S0140-6736(99)02267-9
  4. Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem. 2008;103(2):509-519. https://doi.org/10.1002/jcb.21417
  5. Berlett BS, Stadtman ER. Protein Oxidation in Aging, Disease, and Oxidative Stress. The J Biol Chem.1997;272(33):20313-20316. https://doi.org/10.1074/jbc.272.33.20313
  6. Bernardi P, Petronilli V, Di Lisa F, Forte M. A mitochondrial perspective on cell death. Trends Biochem Sci. 2001;26(2):112-117. https://doi.org/10.1016/S0968-0004(00)01745-X
  7. Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with High-Grade Prostate Intraepithelial Neoplasia: A preliminary report from a one-year proof-of-principle study. Cancer Res. 2006;66(2):1234-1240. https://doi.org/10.1158/0008-5472.CAN-05-1145
  8. Bickford P, Heron C, Young DA, Gerhardt GA, De La Garza R. Impaired acquisition of novel locomotor tasks in aged and norepinephrine-depleted F344 rats. Neurobiol Aging.1992;13(4):475-481. https://doi.org/10.1016/0197-4580(92)90075-9
  9. Bickford P. Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res.1993; 620(1):133-138. https://doi.org/10.1016/0006-8993(93)90279-V
  10. Bu-Abbas A, Clifford MN, Walker R, Ioannides C. Marked antimutagenic potential of aqueous green tea extracts: mechanism of action. Mutagenesis 1994;9(4):325-331. https://doi.org/10.1093/mutage/9.4.325
  11. Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest.1991;87(2):432-438. https://doi.org/10.1172/JCI115014
  12. Burgess ML, McCrea JC, Hedrick HL. Age-associated changes in cardiac matrix and integrins. Mech Ageing Dev. 2001;122(15):1739-1756. https://doi.org/10.1016/S0047-6374(01)00296-2
  13. Cao J, Xu Y, Chen J, and Klaunig JE. Chemopreventive effects of green and black tea on pulmonary and hepatic carcinogenesis. Fundam Appl Toxicol. 1996;29(2):244-250. https://doi.org/10.1006/faat.1996.0028
  14. Carter HB, Epstein JI, Partin AW. Influence of age and prostate-specific antigen on the chance of curable prostate cancer among men with nonpalpable disease. Urology. 1999;53(1):126-130. https://doi.org/10.1016/S0090-4295(98)00466-X
  15. Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD. Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol. 2002;155(8):732-738. https://doi.org/10.1093/aje/155.8.732
  16. Choi JY, Park CS, Kim DJ, Cho MH, Jin BK, Pie JE, Chung WG. Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicol. 2002;23(3):367-374. https://doi.org/10.1016/S0161-813X(02)00079-7
  17. Chow HH, Hakim IA. Pharmacokinetic and chemoprevention studies on tea in humans. Pharmacol Res. 2011;64(2):105-112
  18. Cory S, Adams JM. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647-656. https://doi.org/10.1038/nrc883
  19. Devan BD, Goad EH, Petri HL. Dissociation of hippocampal and striatal contributions to spatial navigation in the water maze. Neurobiol Learn Mem. 1996;66(3):305-323. https://doi.org/10.1006/nlme.1996.0072
  20. Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18(6):655-673. https://doi.org/10.1097/00004872-200018060-00002
  21. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR, and Baynes JW. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993;91(6):2463-2469. https://doi.org/10.1172/JCI116481
  22. El Bedoui J, Oak MH, Anglard P, Schini-Kerth VB. Catechins prevent vascular smooth muscle cell invasion by inhibiting MT1-MMP activity and MMP-2 expression. Cardio Res. 2005;67(2):317-325. https://doi.org/10.1016/j.cardiores.2005.03.017
  23. Erba D, Riso P, Bordoni A, Foti P, Biagi PL, Testolin G. Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J Nutr Biochem. 2005;16(3): 144-149. https://doi.org/10.1016/j.jnutbio.2004.11.006
  24. Esterbauer H, Jurgens G, Quehenberger O, and Koller E. Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res.1987;28:495-509.
  25. Gao YT, McLaughlin JK, Blot WJ, Ji BT, Dai Q, Fraumeni JF Jr. Reduced risk of esophageal cancer associated with green tea consumption. J Natl Cancer Inst. 1994;86(11):855-858. https://doi.org/10.1093/jnci/86.11.855
  26. Gerlach M, Double KL, Ben-Shachar D, Zecca L, Youdim MB, Riederer P. Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson's disease. Neurotox Res. 2003;5(1-2):35-44. https://doi.org/10.1007/BF03033371
  27. Gokulakrisnan A, Vinayagam MM, Rahman LAA, Thirunavukkarasu C. Attenuation of cardiac oxidative stress by (-)-epigallocatechin-gallate(EGCG) in CS exposed rats. Biomed Pharmacother. 2010 Oct 23. [Epub ahead of print]
  28. Gotz ME, Freyberger A, Riederer P. Oxidative stress: a role in the pathogenesis of Parkinson's disease. J Neural Transm Suppl.1990;29:241-249.
  29. Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med. 1992;21(3):334-350. https://doi.org/10.1016/0091-7435(92)90041-F
  30. Gutteridge JM. Free radicals in disease processes: a compilation of cause and consequence. Free Radic Res Commun.1993;19(3):141-158. https://doi.org/10.3109/10715769309111598
  31. Hakim IA, Harris RB, Brown S, Chow HH, Wiseman S, Agarwal S, Talbot W. Effect of increased tea consumption on oxidative DNA damage among smokers: a randomized controlled study. J Nutr. 2003;133(10):3303S-3309S. https://doi.org/10.1093/jn/133.10.3303S
  32. Halliwell B, Gutteridge JM. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys. 1986;246(2):501-514. https://doi.org/10.1016/0003-9861(86)90305-X
  33. Hammerstone JF, Lazarus SA, Schmitz HH. Procyanidin content and variation in some commonly consumed foods. J Nutr. 2000;130(8S Suppl):2086S-2092S. https://doi.org/10.1093/jn/130.8.2086S
  34. Harman D. Free radical involvement in aging. Pathophysiology and therapeutic implications. Drug Aging. 1993;3(1):60-80. https://doi.org/10.2165/00002512-199303010-00006
  35. Harman D. Free-radical theory of aging. Increasing the functional life span. Ann N Y Acad Sci 1994;717:1-15. https://doi.org/10.1111/j.1749-6632.1994.tb12069.x
  36. Hayakawa S, Saeki K, Sazuka M, Suzuki Y, Shoji Y, Ohta T, Kaji K, Yuo A and Isemura M. Apoptosis induction by epigallocatechin gallate involves its binding to Fas. Biochem Biophys Res Commun. 2001; 285(5):1102-1106. https://doi.org/10.1006/bbrc.2001.5293
  37. Hibasami H, Komiya T, Achiwa Y, Ohnishi K, Kojima T, Nakanishi K, Akashi K, Hara Y. Induction of apoptosis in human stomach cancer cells by green tea catechins. Oncol Rep.1998;5(2):527-529.
  38. Hindmarch I, Rigney U, Stanley N, Quinlan P, Rycroft J, Lane J: A naturalistic investigation of the effects of day-long consumption of tea, coffee and water on alertness, sleep onset and sleep quality. Psychopharmacol. 2000;149(3):203-216. https://doi.org/10.1007/s002130000383
  39. Hirose M, Akagi K, Hasegawa R, Yaono RM, Satoh T, Hara Y, Wakabayashi K, Ito N. Chemoprevention of 2-amino-1-methyl-6-phenylimidazow[4,5-b]-pyridine (PhIP).-induced mammary gland carcinogenesis by antioxidants in F344 female rats. Carcinogenesis 1995;16(2):217-221. https://doi.org/10.1093/carcin/16.2.217
  40. Hoshiyama Y, Kawaguchi T, Miura Y, Mizoue T, Tokui N, Yatsuya H, Sakata K, Kondo T, Kikuchi S, Toyoshima H, Hayakawa N, Tamakoshi A, Ohno Y, Yoshimura T; Japan Collaborative Cohort Study Group. A nested case-control study of stomach cancer in relation to green tea consumption in Japan. Br J Cancer. 2004;90(1):135-138. https://doi.org/10.1038/sj.bjc.6601512
  41. Ichikawa D, Matsui A, Imai M, Sonoda Y, Kasahara T. Effect of various catechins on the IL-12p40 production by murine peritoneal macrophages and a macrophage cell line, J774.1. Biol Pharm Bull. 2004;27(9):1353-1358. https://doi.org/10.1248/bpb.27.1353
  42. Inagake M, Yamane T, Kitao Y, Oya K, Matsumoto H, Kikuoka N, Nakatani H, Takahashi T, Nishimura H, Iwashima A. Inhibition of 1,2-dimethylhydrazine-induced oxidative DNA damage by green tea extract in rat. Jpn J Cancer Res.1995;86(11):1106-1111. https://doi.org/10.1111/j.1349-7006.1995.tb03027.x
  43. Inal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta. 2001;305(1-2):75-80. https://doi.org/10.1016/S0009-8981(00)00422-8
  44. Jain M, Hislop G, Howe G, Burch J, Ghadirian P. Alcohol and other beverage use and prostate cancer risk among Canadian men. Int J Cancer.1998;78(6):707-711. https://doi.org/10.1002/(SICI)1097-0215(19981209)78:6<707::AID-IJC7>3.0.CO;2-2
  45. Janqueira VB, Barros SB, Chan SS, Rodriguez I, Giavarotti L, Abud RL, Deucher GP. Aging and oxidative stress. Mol Aspects Med. 2004;25(1-2):5-16. https://doi.org/10.1016/j.mam.2004.02.003
  46. Ji BT, Chow WH, Hsing AW, McLaughlin JK, Dai Q, Gao YT, Blot WJ, Fraumeni JF Jr. Green tea consumption and the risk of pancreatic and colorectal cancers. Int J Cancer. 1997;70(3):255-258. https://doi.org/10.1002/(SICI)1097-0215(19970127)70:3<255::AID-IJC1>3.0.CO;2-W
  47. Joseph JA, Bartus RT, Clody DE, Morgan D, Finch C, Beer B, Sesack S. Psychomotor performance in the senescent rodent: reduction of deficits via striatal dopamine receptor up-regulation. Neurobiol. Aging. 1983;4(4):313-319. https://doi.org/10.1016/0197-4580(83)90008-8
  48. Jung YD, Kim MS, Shin BA, Chay KO, Ahn BW, Liu W, Bucana CD, Gallick GE and Ellis LM. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer. 2001;84(6):844-850. https://doi.org/10.1054/bjoc.2000.1691
  49. Kanai H, Matsuzawa Y, Kotani K, Keno Y, Kobatake T, Nagai Y, Fujioka S, Tokunaga K and Tarui S. Close correlation of intra-abdominal fat accumulation to hypertension in obese women. Hypertension. 1990;16(5):484-490. https://doi.org/10.1161/01.HYP.16.5.484
  50. Kang WS, Lim IH, Yuk DY, Chung KH, Park JB, Yoo HS, Yun YP. Antithrombotic Activities of Green Tea Catechins and (-)-Epigallocatechin Gallate. Thromb Res. 1999;96(3):229-237. https://doi.org/10.1016/S0049-3848(99)00104-8
  51. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL and Shay JW. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011-2115. https://doi.org/10.1126/science.7605428
  52. Kluger A, Gianutsos JG, Golomb J, Ferris SH, George AE, Frannssen E, Reisberg B. Patterns of motor impairment in normal aging, mild cognitive decline, and early Alzheimer's disease. J Gerontol B Psychol Sci Soc Sci.1997;52(1):28-39.
  53. Koga T, Meydani M. Effect of plasma metabolites of (+)-catechin and quercetin on monocyte adhesion to human aortic endothelial cells. Am J Clin Nutr. 2001;73(5):941-948. https://doi.org/10.1093/ajcn/73.5.941
  54. Kumar N, Kant R, Maurya PK. Concentration-dependent effect of (-) epicatechin in hypertensive patients Phytother Res. 2010; 24(10):1433-1436. https://doi.org/10.1002/ptr.3119
  55. Kuroda Y, Hara Y. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat Res. 1999;436(1):69-97. https://doi.org/10.1016/S1383-5742(98)00019-2
  56. Lakatta EG, Levy D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part I: Aging arteries: A "set up" for vascular disease. Circulation. 2003;107(1):139-146. https://doi.org/10.1161/01.CIR.0000048892.83521.58
  57. Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol Rev.1993;73(2):413-467. https://doi.org/10.1152/physrev.1993.73.2.413
  58. Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch Biochem Biophys. 2010;501(1):65-72. https://doi.org/10.1016/j.abb.2010.06.013
  59. Lee MJ, Maliakal P, Chen L, Meng X, Bondoc FY, Prabhu S, Lambert G, Mohr S, Yang CS. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans : Formation of different metabolites and individual variability. Cancer Epidemiol Biomarkers Prev. 2002;11(10Pt1):1025-1032.
  60. Levites Y, Amit T, Mandel S, Youdim MB. Neuroprotection and neurorescue against amyloid beta toxicity and PKC-dependent release of non-amyloidogenic soluble precursor protein by green tea polyphenol (-)epigallocatechin-3-gallate.FASEB J. 2003;17(8):952-954. https://doi.org/10.1096/fj.02-0881fje
  61. Levites Y, Amit T, Youdim MB, Mandel S. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin-3-gallate neuroprotective action. J Biol Chem. 2002;277(34):30574-30580. https://doi.org/10.1074/jbc.M202832200
  62. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S: Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001;78(5):1073-1082. https://doi.org/10.1046/j.1471-4159.2001.00490.x
  63. Li HL, Huang Y, Zhang C-N, Liu G, Wei YS, Wang AB, Liu YQ, Hui RT, Wei C, Williams GM, Liu DP, Liang CC. Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med. 2006;40(10):1756-1775. https://doi.org/10.1016/j.freeradbiomed.2006.01.005
  64. Li Q, Zhao HF, Zhang ZF, Liu ZG, Pei XR, Wang JB, Cai MY, Li Y. Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience. 2009; 159(4):1208-1215. https://doi.org/10.1016/j.neuroscience.2009.02.008
  65. Liao S, Umekita Y, Guo J, Kokontis JM, Hiipakka RA. Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Lett. 1995;96(2):239-243. https://doi.org/10.1016/0304-3835(95)03948-V
  66. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21(21):8370-8377.
  67. Lin J, Lopez EF, Jin Y, Remmen HV, Bauch T, Han HC, Lindsey ML. Age-related cardiac muscle sarcopenia: Combining experimental and mathematical modeling to identify mechanisms. Exp Gerontol. 2008;43(4):296-306. https://doi.org/10.1016/j.exger.2007.12.005
  68. Locher R, Emmanuele L, Suter PM, Vetter W, Barton M. Green tea polyphenols inhibit human vascular smooth muscle cell proliferation stimulated by native low-density lipoprotein. Eur J Pharmacol. 2002;434(1-2):1-7. https://doi.org/10.1016/S0014-2999(01)01535-7
  69. Luczaj W, Waszkiewicz E, Skrzydlewska E, Roszkowska-Jakimiec W. Green tea protection against age-dependent ethanol-induced oxidative stress. J Toxicol Environ Health A. 2004;67(7):595-606. https://doi.org/10.1080/15287390490425579
  70. Lyu SY, Park WB. Production of cytokine and NO by RAW 264.7 macrophages and PBMC in vitro incubation with flavonoids. Arc Pharm Res. 2005;28(5):573-581. https://doi.org/10.1007/BF02977761
  71. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727-747. https://doi.org/10.1093/ajcn/79.5.727
  72. Mandel S, Maor G, Youdim MB: Iron and alpha-synuclein in the substantia Nigra of MPTP-treated mice: Effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J Mol Neurosci. 2004;24(3):401-416. https://doi.org/10.1385/JMN:24:3:401
  73. Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MB. Multifunctional Activities of Green Tea Catechins in Neuroprotection-Modulation of Cell Survival Genes, Iron-Dependent Oxidative Stress and PKC Signaling Pathway. Neurosignals. 2005;14(1-2):46-60. https://doi.org/10.1159/000085385
  74. Maridonneau I, Braquet P, Garay RP. $Na^+$ and $K^+$ transport damage induced by oxygen free radicals in human red cell membranes. J Biol Chem. 1983;258(5):3107-31013.
  75. Masuda M, Suzui M, Weinstein IB. Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res. 2001;7(12):4220-4229.
  76. Matsumoto H, Yamane T, Inagake M, Nakatani H, Iwata Y, Takahashi T, Nishimura H, Nishino H, Nakagawa K, Miyazawa T. Inhibition of mucosal lipid hyperoxidation by green tea extract in 1,2-dimethylhydrazine-induced rat colonic carcinogenesis. Cancer Lett.1996;104(2):205-209. https://doi.org/10.1016/0304-3835(96)04248-6
  77. Matsuoka Y, Hasegawa H, Okuda S, Muraki T, Uruno T, Kubota K. Ameliorative effects of tea catechins on active oxygen-related nerve cell injuries. J Pharmacol Exp Ther.1995; 274(2):602-608.
  78. Mattson MP, Barger SW, Furukawa K, Bruce AJ, Wyss-Coray T, Mark RJ, Mucke L. Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responses and Alzheimer's disease. Brain Res Rev.1997;23(1-2):47-61. https://doi.org/10.1016/S0165-0173(96)00014-8
  79. Maurya PK, Arora K, Sarkar S. Role of L-ascorbic acid in the stability of human erythrocytes during aging in humans. Indian J Gerontol. 2009;23:1-9.
  80. Maurya PK, Kumar P, Siddiqui N, Tripathi P, Rizvi SI. Age-associated changes in erythrocyte glutathione peroxidase activity: correlation with total antioxidant potential. Indian J Biochem Biophys. 2010;47:319-321.
  81. Maurya PK, Prakash S. Intracellular uptake of (-) epicatechin by human erythrocytes as a function of human age. Phytotherapy Res. 2011;25(6):944-46. https://doi.org/10.1002/ptr.3343
  82. Maurya PK, Rizvi SI. Age dependent changes in glutathione-S-transferase: correlation with total total antioxidant potential and red cell intracellular glutathione. Indian J Clin Biochem. 2010;25(4):398-400. https://doi.org/10.1007/s12291-010-0047-5
  83. Maurya PK, Rizvi SI. Alterations in plasma nitric oxide during aging in humans. Indian J Biochem Biophys. 2009;46:130-132.
  84. Maurya PK, Rizvi SI. Protective role of tea catechins on erythrocytes subjected to oxidative stress during human aging. Nat Prod Res. 2009;23(12):1072-1079. https://doi.org/10.1080/14786410802267643
  85. McDonald RJ, White NM. Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav Neural Biol. 1994;61(3):260-270. https://doi.org/10.1016/S0163-1047(05)80009-3
  86. Melov S. Animal models of oxidative stress, aging and therapeutic antioxidant interventions. Int J Biochem Cell Biol. 2002;34(11):1395-1400. https://doi.org/10.1016/S1357-2725(02)00086-9
  87. Mittal A, Pate MS, Wylie RC, Tollefsbol TO, Katiyar SK. EGCG down-regulates telomerase in human breast carcinoma MCF-7 cells, leading to suppression of cell viability and induction of apoptosis. Int J Oncol. 2004;24(3):703-710.
  88. Miura Y, Chiba T, Miura S, Tomita I, Umegaki K, Ikeda M, Tomita T. Green tea polyphenols (flavan 3-ols) prevent oxidative modification of low density lipoproteins: An ex vivo study in humans. J Nutr Biochem. 2000;11(4):216-222. https://doi.org/10.1016/S0955-2863(00)00068-1
  89. Mohan S, Radha E. Age related changes in muscle protein degradation. Mech Ageing Dev. 1978;7(2):81-87. https://doi.org/10.1016/0047-6374(78)90054-4
  90. Morales CP, Holt SE, Ouellette M, Kaur KJ, Yan Y, Wilson KS, White MA, Wright WE, Shay JW. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet.1999;21(1):115-118. https://doi.org/10.1038/5063
  91. Nagao T, Hase T, Tokimitsu I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity. 2007;15(6):1473-1483. https://doi.org/10.1038/oby.2007.176
  92. Nagata H, Takekoshi S, Takagi T, Honma T, Watanabe K. Antioxidative action of flavonoids, quercetin and catechin, mediated by the activation of glutathione peroxidase. Tokai J Exp Clin Med.1999;24(1):1-11.
  93. Nakachi K, Suemasu K, Suga K, Takeo T, Imai K, Higashi Y. Influence of Drinking Green Tea on Breast Cancer Malignancy among Japanese Patients. Jpn J Cancer Res. 1998;89(3):254-261. https://doi.org/10.1111/j.1349-7006.1998.tb00556.x
  94. Nam S, Smith DM, Dou QP. Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem. 2001;276(16):13322-13330. https://doi.org/10.1074/jbc.M004209200
  95. Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem. 1987;262(12):5488-5491.
  96. Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer's disease. J Neurochem. 2003;87(1):172-181. https://doi.org/10.1046/j.1471-4159.2003.01976.x
  97. Osada K, Takahashi M, Hoshina S, Nakamura M, Nakamura S, Sugano M. Tea catechins inhibit cholesterol oxidation accompanying oxidation of low density lipoprotein in vitro. Comp Biochem Physiol C Toxicol Pharmacol. 2001;128(2):153-164. https://doi.org/10.1016/S1532-0456(00)00192-7
  98. Packham MA. Role of platelets in thrombosis and hemostasis. Can J Physiol Pharmacol. 1994;72(3):278-284. https://doi.org/10.1139/y94-043
  99. Pan T, Fei J, Zhou X, Jankovic J, Le W. Effects of green tea polyphenols on dopamine uptake and on MPP+-induced dopamine neuron injury. Life Sci. 2003;72(9):1073-1083. https://doi.org/10.1016/S0024-3205(02)02347-0
  100. Pandey KB, Mehdi MM, Maurya PK, Rizvi SI. Plasma protein oxidation and its correlation with antioxidant potential during human aging. Dis Markers. 2010;29(1):31-36. https://doi.org/10.1155/2010/964630
  101. Paschka AG, Butler R, Young CY. Induction of apoptosis in prostate cancer cell lines by the green tea component, (-)-epigallocatechin-3-gallate. Cancer Lett.1998;130(1-2):1-7. https://doi.org/10.1016/S0304-3835(98)00084-6
  102. Perry G, Taddeo MA, Nunomura A, Zhu X, Zenteno-Savin T, Drew KL, Shimohama S, Avila J, Castellani RJ, Smith MA. Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response. Comp Biochem Physiol C Toxicol Pharmacol. 2002;133(4):507-513. https://doi.org/10.1016/S1532-0456(02)00119-9
  103. Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases:A review of their intracellular targets. Eur J Pharmacol. 2006;545(1):51-64. https://doi.org/10.1016/j.ejphar.2006.06.025
  104. Ramesh E, Geraldine P, Thomas PA. Regulatory effect of epigallocatechin gallate on the expression of C-reactive protein and other inflammatory markers in an experimental model of atherosclerosis. Chem Biol Interact. 2010;183(1):125-132. https://doi.org/10.1016/j.cbi.2009.09.013
  105. Raza H, John A. In vitro protection of reactive oxygen species-induced degradation of lipids, proteins and 2-deoxyribose by tea catechins. Food Chem Toxicol. 2007;45(10):1814-1820. https://doi.org/10.1016/j.fct.2007.03.017
  106. Reiter RJ, Guerrero JM, Garcia JJ, Acuna-Castroviejo D. Reactive oxygen intermediates, molecular damage, and aging. Relation to melatonin. Ann N Y Acad Sci. 1998;854:410-424. https://doi.org/10.1111/j.1749-6632.1998.tb09920.x
  107. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem. 1989;52(2):515-520. https://doi.org/10.1111/j.1471-4159.1989.tb09150.x
  108. Rizvi SI, Maurya PK. Markers of oxidative stress in erythrocytes during aging in humans. Ann N Y Acad Sci. 2007;1100:373-382. https://doi.org/10.1196/annals.1395.041
  109. Rizvi SI, Jha R, Maurya PK. Erythrocyte plasma membrane redox system in human aging. Rejuvenation Res. 2006;9:490-494.
  110. Rizvi SI, Maurya PK. Alterations in antioxidant enzymes during aging in humans. Mol Biotechnol. 2007;27:58-61.
  111. Rizvi SI, Maurya PK. L-cysteine influx in erythrocytes as a function of human age. Rejuvenation Res. 2008;11(3):661-665. https://doi.org/10.1089/rej.2007.0652
  112. Rizvi SI, Pandey KB, Jha R, Maurya PK. Ascorbate recycling by erythrocytes during aging in humans. Rejuvenation Res. 2009;12:3-6. https://doi.org/10.1089/rej.2008.0787
  113. Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Bush AI, Giordano T. An iron-responsive element type II in the 5'-untranslated region of the Alzheimer's amyloid precursor protein transcript. J Biol Chem. 2002;277(47):45518-45528. https://doi.org/10.1074/jbc.M207435200
  114. Ruidavets J, Teissedre P, Ferrieres J, Carando S, Bougard G, Cabanis J. Catechin in the Mediterranean diet: vegetable, fruit or wine? Atherosclerosis 2000;153(1):107-117. https://doi.org/10.1016/S0021-9150(00)00377-4
  115. Sachinidis A, Skach RA, Seul C, Ko Y, Hescheler JR, Ahn HY, Fingerle JR. Inhibition of the PDGF ${\beta}$-receptor tyrosine phosphorylation and its downstream intracellular signal transduction pathway in rat and human vascular smooth muscle cells by different catechins. FASEB J. 2002; 16(8):893-895. https://doi.org/10.1096/fj.01-0799fje
  116. Sadava D, Whitlock E, Kane SE. The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells. Biochem Biophys Res Commun. 2007;360(1):233-237. https://doi.org/10.1016/j.bbrc.2007.06.030
  117. Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys. 1995;322(2):339-346. https://doi.org/10.1006/abbi.1995.1473
  118. Sanae F, Miyaichi Y, Kizu H, Hayashi H. Effects of catechins on vascular tone in rat thoracic aorta with endothelium. Life Sci. 2002;71(21):2553-2562. https://doi.org/10.1016/S0024-3205(02)02080-5
  119. Sanna B, Bueno OF, Dai YS, Wilkins BJ, Molkentin JD. Direct and indirect interactions between calcineurin-NFAT and MEK1- extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Mol Cell Biol. 2005;25(3):865-878. https://doi.org/10.1128/MCB.25.3.865-878.2005
  120. Santangelo C, Vari R, Scazzocchio B, Di Benedetto R, Filesi C, Masella R. Polyphenols, intracellular signalling and inflammation. Ann Ist Super Sanita 2007;43(4):394-405.
  121. Seeram NP, Zhang Y, Nair MG. Inhibition of proliferation of human cancer cells and cyclooxygenase enzymes by anthocyanidins and catechins. Nutr Cancer. 2003;46(1):101-106. https://doi.org/10.1207/S15327914NC4601_13
  122. Shay JW, Zou Y, Hiyama E, Wright WE. Telomerase and cancer. Hum Mol Genet. 2001;10(7):677-685. https://doi.org/10.1093/hmg/10.7.677
  123. Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB. (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin. Cancer Res. 2005;11(7):2735-2746. https://doi.org/10.1158/1078-0432.CCR-04-2014
  124. Shukitt-Hale B, Lau FC, Joseph JA. Berry Fruit Supplementation and the Aging Brain. J Agric. Food Chem. 2008;56(3):636-641. https://doi.org/10.1021/jf072505f
  125. Shukitt-Hale B, Mouzakis G, Joseph JA. Psychomotor and spatial memory performance in aging male Fischer 344 rats. Exp Gerontol. 1998;33(6):615-624. https://doi.org/10.1016/S0531-5565(98)00024-2
  126. Shukitt-Hale B. The effects of aging and oxidative stress on psychomotor and cognitive behavior. Age 1999; 22(1):9-17. https://doi.org/10.1007/s11357-999-0002-7
  127. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER and Floyd RA. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA. 1991;88(23):10540-10543. https://doi.org/10.1073/pnas.88.23.10540
  128. Son DJ, Cho MR, Jin YR, Kim SY, Park YH, Lee SH, Akiba S, Sato T, Yun YP. Antiplatelet effect of green tea catechins: a possible mechanism through arachidonic acid pathway. Prostaglandins Leukot Essent Fatty Acids. 2004;71(1):25-31. https://doi.org/10.1016/j.plefa.2003.12.004
  129. Song DU, Jung YD, Chay KO, Chung MA, Lee KH, Yang SY, Shin BA, Ahn BW. Effect of Drinking Green Tea on Age-Associated Accumulation of Maillard-Type Fluorescence and Carbonyl Groups in Rat Aortic and Skin Collagen. Arch Biochem Biophys. 2002;397(2):424-429. https://doi.org/10.1006/abbi.2001.2695
  130. Stangl V, Dreger H, Stangl K, Lorenz M. Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res. 2007;73(2):348-358. https://doi.org/10.1016/j.cardiores.2006.08.022
  131. Starke-Reed PE, Oliver CN. Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys. 1989; 275(2):559-567. https://doi.org/10.1016/0003-9861(89)90402-5
  132. Steinberg D, Parthasarathy S, Carew TF, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increases its atherogenicity. N Engl J Med. 1989;320(14):915-924. https://doi.org/10.1056/NEJM198904063201407
  133. Subramanian N, Venkatesh P, Ganguli S, Sinkar VP. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins. J Agric Food Chem. 1999;47(7):2571-2578. https://doi.org/10.1021/jf981042y
  134. Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H. Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis. 1998;19(10):1771-1776. https://doi.org/10.1093/carcin/19.10.1771
  135. Sugisawa A, Kimura M, Fenech M, Umegaki K. Anti-genotoxic effects of tea catechins against reactive oxygen species in human lymphoblastoid cells. Mutat Res. 2004;559(1-2):97-103. https://doi.org/10.1016/j.mrgentox.2004.01.002
  136. Sutherland BA, Rahman RM, Appleton I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem. 2006;17(5):291-306. https://doi.org/10.1016/j.jnutbio.2005.10.005
  137. Tournaire C, Croux S, Maurette MT, Beck I, Hocquaux M, Braun AM, Oliveros E. Antioxidant activity of flavonoids: Efficiency of singlet oxygen (1${\Delta}$g) quenching. J Photochem Photobiol B. 1993; 19(3):205-215. https://doi.org/10.1016/1011-1344(93)87086-3
  138. Upaganlawar A, Balaraman R. Effect of vitamin E and green tea on hemodynamic, electrocardiographic and some biochemical alterations in experimentally induced myocardial infarction in rats. Eur J Integrative Med. 2010;2(3):135-141. https://doi.org/10.1016/j.eujim.2010.08.001
  139. van Acker SA, van den Berg DJ, Tromp MN, Griffioen DH, van Bennekom WP, van der Vijgh WJ. Bast A. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med. 1996;20(3):331-342. https://doi.org/10.1016/0891-5849(95)02047-0
  140. Velayutham P, Babu A, Liu D. Green Tea Catechins and Cardiovascular Health: An Update. Curr Med Chem.2008; 15(18):1840-1850. https://doi.org/10.2174/092986708785132979
  141. Verma S, Yeh ET. C-reactive protein and atherothrombosis-beyond a biomarker: an actual partaker of lesion formation. Am J Physiol Regul Integr Comp Physiol. 2003;285(5):R1253-256. https://doi.org/10.1152/ajpregu.00170.2003
  142. Virmani R, Avolio AP, Mergner WJ, Robinowitz M, Herderick EE, Cornhill JF, Guo SY, Liu TH, Ou DY, O'Rourke M. Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis: comparison between occidental and Chinese communities. Am J Pathol.1991;139(5):1119-1129.
  143. Vlassara H, Bucala R, Striker L. Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Inves. 1994;70(2):138-151.
  144. Wakai K, Ohno Y, Obata K, Aoki K: Prognostic significance of selected lifestyle factors in urinary bladder cancer. Jpn J Cancer Res. 1993;84(12):1223-1229. https://doi.org/10.1111/j.1349-7006.1993.tb02826.x
  145. Wang CH, Li SH, Weisel RD, Fedak PW, Dumont AS, Szmitko P, Li RK, Mickle DA, Verma S. C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle. Circulation. 2003;107(13):1783-1790. https://doi.org/10.1161/01.CIR.0000061916.95736.E5
  146. Wang ZY, Huang MT, Lou YR, Xie JG, Reuhl KR, Newmark HL, Ho CT, Yang CS, Conney, AH. Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carconogenesis in 7,12-dimethylbenz[a]anthracene-initiated SKH-1 mice. Cancer Res. 1994;54(13):3428-3435.
  147. Wang ZY, Khan WA, Bickers DR and Mukhtar H. Protection against polycyclic aromatic hydrocarbon-induced skin tumor initiation in mice by green tea polyphenols. Carcinogenesis. 1989;10(2):411-415. https://doi.org/10.1093/carcin/10.2.411
  148. Weinreb O, Mandel S, Amit T, Youdim MB. Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. J Nutr Biochem. 2004;15(9):506-516. https://doi.org/10.1016/j.jnutbio.2004.05.002
  149. West RL. An application of pre-frontal cortex function theory to cognitive aging. Psychol Bull. 1996;120(2):272-292. https://doi.org/10.1037/0033-2909.120.2.272
  150. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996;313(Pt1):17-29. https://doi.org/10.1042/bj3130017
  151. Wolff VJ, Freshman M. Age-related reduction of the RNA content of rat cardiac muscle and cerebellum. Arch Biochem Biophys. 1961;95:181-182. https://doi.org/10.1016/0003-9861(61)90125-4
  152. Xu Y, Ho CT, Amin SG, Han C, Chung FL. Inhibition of tobacco-specific nitrosamine-induced lung tumorigenesis in A/J mice by green tea and its major polyphenol as antioxidants. Cancer Res. 1992; 52(14):3875-3879.
  153. Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T: Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer's disease. J Neurochem. 2002; 82(5):1137-1147.
  154. Yamane T, Nakatani H, Kikuoka N, Matsumoto H, Iwata Y, Kitao Y, Oya K, Takahashi T. Inhibitory effects and toxicity of green tea polyphenols for gastrointestinal carcinogenesis. Cancer 1996; 77(8 Suppl):1662-1667. https://doi.org/10.1002/(SICI)1097-0142(19960415)77:8+<1662::AID-CNCR12>3.3.CO;2-I
  155. Youdim KA, Joseph JA. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med. 2001;30(6),583-594. https://doi.org/10.1016/S0891-5849(00)00510-4
  156. Youdim MB, Stephenson G, Ben Shachar D. Ironing iron out in Parkinson's disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci. 2004;1012:306-325. https://doi.org/10.1196/annals.1306.025
  157. Zaveri NT. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sci. 2006;78(18):2073-2080. https://doi.org/10.1016/j.lfs.2005.12.006
  158. Zhang G, Miura Y, Yagasaki K. Effects of dietary powdered green tea and theanine on tumor growth and endogenous hyperlipidemia in hepatoma-bearing rats. Biosci Biotechnol Biochem. 2002;66(4):711-716. https://doi.org/10.1271/bbb.66.711
  159. Zhong L, Goldberg MS, Gao YT, Hanley JA, Parent ME, Jin F. A population-based case-control study of lung cancer and green tea consumption among women living in Shanghai, China. Epidemiology. 2001;12(6):695-700. https://doi.org/10.1097/00001648-200111000-00019
  160. Zhou YD, Kim YP, Li XC, Baerson SR, Agarwal AK, Hodges TW, Ferreira D, Nagle DG. Hypoxia-inducible factor-1 activation by (-)-epicatechin gallate: potential adverse effects of cancer chemoprevention with high-dose green tea extracts. J Nat Prod. 2004;67(12):2063-2069. https://doi.org/10.1021/np040140c
  161. Zhu M, Gong Y, Yang Z, Ge G, Han C, Chen J. Green tea and its major components ameliorate immune dysfunction in mice bearing Lewis lung carcinoma and treated with the carcinogen NNK. Nutr Cancer. 1999;35(1):64-72. https://doi.org/10.1207/S1532791464-72