Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 49 Issue 1
- /
- Pages.127-133
- /
- 2012
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
BETA-EXPANSIONS WITH PISOT BASES OVER Fq((x-1))
- Hbaib, Mohamed (Departement de Mathematiques Faculte des Sciences de Sfax)
- Received : 2010.09.01
- Published : 2012.01.31
Abstract
It is well known that if the
File
References
- S. Akiyama, Pisot numbers and greedy algorithm, Number theory (Eger, 1996), 9-21, deGruyter, Berlin, 1998.
- P. Bateman and A. L. Duquette, The analogue of the Pisot-Vijayaraghavan numbers in fields of formal power series, Illinois J. Math. 6 (1962) 594-606.
- C. Frougny and B. Solomyak, Finite beta-expansions, Ergodic Theory Dynam. Systems 12 (1992), no. 4, 713-723.
- M. Hbaib and M. Mkaouar, Sur le beta-developpement de 1 dans le corps des series formelles, Int. J. Number Theory 2 (2006), no. 3, 365-378. https://doi.org/10.1142/S1793042106000619
- M. Hollander, Linear numeration systems, Finite beta-expansion and discrete spectrum of substitution dynamical systems, Ph. D thesis, University of Washington, 1966.
- J. Neukirch, Algebraic Number Theory, Translated from the 1992 German original and with a note by Norbert Schappacher.With a foreword by G. Harder.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 322. Springer-Verlag, Berlin, 1999.
- A. Renyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477-493. https://doi.org/10.1007/BF02020331
-
K. Scheicher,
$\beta$ -expansions in algebraic function fields over finite fields, Finite Fields Appl. 13 (2007), no. 2, 394-410. https://doi.org/10.1016/j.ffa.2005.08.008
Cited by
- Continued $$\beta $$ β -fractions with formal power series over finite fields vol.39, pp.1, 2016, https://doi.org/10.1007/s11139-015-9725-5