DOI QR코드

DOI QR Code

ON A p-ADIC ANALOGUE OF k-PLE RIEMANN ZETA FUNCTION

  • Park, Dae-Kil (Department of Electronic Engineering Kyungnam University) ;
  • Son, Jin-Woo (Department of Mechanical Engineering Kyungnam University)
  • Received : 2010.09.27
  • Published : 2012.01.31

Abstract

In this paper, we construct a p-adic analogue of multiple Riemann zeta values and express their values at non-positive integers. In particular, we obtain a new congruence of the higher order Frobenius-Euler numbers and the Kummer congruences for the Bernoulli numbers as a corollary.

References

  1. A. Adelberg, Arithmetic properties of the Norlund polynomial $B_{n}^{(x)}$, Discrete Math. 204 (1999), no. 1-3, 5-13. https://doi.org/10.1016/S0012-365X(98)00363-X
  2. L. Carlitz, Some congruences for the Bernoulli numbers, Amer. J. Math. 75 (1953), 163-172. https://doi.org/10.2307/2372625
  3. L. Carlitz, Some properties of the Norlund polynomial $B_{n}^{(x)}$, Math. Nachr. 33 (1967), 297-311. https://doi.org/10.1002/mana.19670330504
  4. G. Frobenius, Uber die Bernoullischen Zahlen un die Eulerschen Polynome, Sitz. Preuss. Akad. Wiss. (1910), 809-847.
  5. F. T. Howard, Congruences and recurrences for Bernoulli numbers of higher order, Fibonacci Quart. 32 (1994), no. 4, 316-328.
  6. K. Iwasawa, Lectures on p-adic L-functions, Annals of Mathematics Studies, No. 74, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972.
  7. M.-S. Kim and J.-W. Son, On a multidimensional Volkenborn integral and higher order Bernoulli numbers, Bull. Austral. Math. Soc. 65 (2002), no. 1, 59-71. https://doi.org/10.1017/S0004972700020062
  8. T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on ${\mathbb{Z}}_{p}$ at q = -1, J. Math. Anal. Appl. 331 (2007), no. 2, 779-792. https://doi.org/10.1016/j.jmaa.2006.09.027
  9. T. Kim and B. Lee, Some identities of the Frobenius-Euler polynomials, Abstr. Appl. Anal. 2009 (2009), Art. ID 639439, 7 pp.
  10. N. Koblitz, p-Adic Analysis: a Short Course on Recent Work, Cambridge University Press, Mathematical Society Lecture Notes Series 46, 1980.
  11. T. Kubota and H. W. Leopoldt, Eine p-adische Theorie der Zetawerte. I. Einfuhrung der p-adischen Dirichletschen L-Funktionen, J. Reine Angew. Math. 214/215 (1964), 328-339.
  12. E. E. Kummer, Uber eine allgemeine Eigenschaft der rationalen Entwickelungsco coeficienten einer bestimmten Gattung analytischer Funktionen, J. Reine Angew. Math. 41 (1851), 368-372.
  13. Yu. V. Osipov, p-adic zeta functions and Bernoulli numbers, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 93 (1980), 192-203. English transl. in Journal of Mathematical Sciences 19 (1982), 1186-1194. https://doi.org/10.1007/BF01085132
  14. K. Shiratani, On Euler numbers, Mem. Fac. Sci. Kyushu Univ. Ser. A 27 (1973), 1-5. https://doi.org/10.2206/kyushumfs.27.1
  15. Y. Simsek, on twisted generalized Euler numbers, Bull. Korean Math. Soc. 41 (2004), no. 2, 299-306. https://doi.org/10.4134/BKMS.2004.41.2.299
  16. Y. Simsek, on Twisted (h; q)-Bernoulli numbers and polynomials related to twisted (h; q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2006), no. 2, 790-804. https://doi.org/10.1016/j.jmaa.2005.12.057
  17. Y. Simsek, q-analogue of twisted l-series and q-twisted Euler numbers, J. Number Theory 110 (2005), no. 2, 267-278. https://doi.org/10.1016/j.jnt.2004.07.003
  18. Y. Simsek, V. Kurt, and O. Yurekli, on interpolation functions of the twisted generalized Frobenius-Euler numbers, Adv. Stud. Contemp. Math. (Kyungshang) 15 (2007), no. 2, 187-194.
  19. H. S. Vandiver, Certain congruences involving the Bernoulli numbers, Duke Math. J. 5 (1939), 548-551. https://doi.org/10.1215/S0012-7094-39-00546-6
  20. L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1997.