Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 49 Issue 1
- /
- Pages.205-211
- /
- 2012
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
ON GRADED KRULL OVERRINGS OF A GRADED NOETHERIAN DOMAIN
- Lee, Eun-Kyung (Department of Mathematics Chung-Ang University) ;
- Park, Mi-Hee (Department of Mathematics Chung-Ang University)
- Received : 2010.10.20
- Published : 2012.01.31
Abstract
Let R be a graded Noetherian domain and A a graded Krull overring of R. We show that if h-dim
File
References
- D. D. Anderson and D. F. Anderson, Divisibility properties of graded domains, Canad. J. Math. 34 (1982), no. 1, 196-215. https://doi.org/10.4153/CJM-1982-013-3
- R. Gilmer, Commutative Semigroup Rings, University of Chicago Press, Chicago, 1984.
- W. Heinzer, On Krull overrings of a Noetherian domain, Proc. Amer. Math. Soc. 22 (1969), 217-222. https://doi.org/10.1090/S0002-9939-1969-0254022-7
- I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
- H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1986.
- J. Nishimura, Note on integral closures of a Noetherian integral domain, J. Math. Kyoto Univ. 16 (1976), no. 1, 117-122. https://doi.org/10.1215/kjm/1250522963
- M. H. Park, Integral closure of graded integral domains, Comm. Algebra 35 (2007), no. 12, 3965-3978. https://doi.org/10.1080/00927870701509511
- C. H. Park and M. H. Park, Integral closure of a graded Noetherian domain, J. Korean Math. Soc. 48 (2011), no. 3, 449-464. https://doi.org/10.4134/JKMS.2011.48.3.449
- D. E. Rush, Noetherian properties in monoid rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 259-278. https://doi.org/10.1016/S0022-4049(03)00103-8
Cited by
- Graded integral domains in which each nonzero homogeneous t-ideal is divisorial pp.1793-6829, 2018, https://doi.org/10.1142/S021949881950018X
- Graded-Noetherian property in pullbacks of graded integral domains vol.67, pp.2, 2018, https://doi.org/10.1007/s11587-018-0357-0