DOI QR코드

DOI QR Code

Study of Dynamics of Allyl Chloride-2-Butanone Binary System Using Time Domain Reflectometry

  • Sudake, Y.S. ;
  • Kamble, S.P. ;
  • Patil, S.S. ;
  • Khirade, P.W. ;
  • Mehrotra, S.C.
  • Received : 2011.06.21
  • Accepted : 2011.11.25
  • Published : 2012.02.20

Abstract

Complex permittivity spectra of Allyl Chloride (AC), 2-Butanone (2-BU) and their binary mixtures over the entire range of concentration were obtained using the Time Domain Reflectometry (TDR) technique in microwave frequency range at various temperatures. Static dielectric constant and relaxation time are obtained from complex permittivity spectra. Density ($\rho$) and refractive index ($n_D$) are also measured. These parameters are used to determine excess dielectric constant, excess inverse relaxation time, excess molar volume, excess molar refraction, polarity, Bruggeman factor and thermodynamic parameters viz. enthalpy of activation and entropy of activation. The values of static dielectric constant and relaxation time increases while density and refractive index decreases with the percentage of 2-Butanone in Allyl Chloride increases. Excess parameters were fitted to a Redlich-Kister equation.

Keywords

Excess dielectric constant;Excess molar volume;Bruggeman factor;Polarity;Enthalpy and Entropy

References

  1. Dharmalingam, K.; Ramachandran, K. K.; Sivagurunathan, P.; Undre, B. P.; Khirade, P. W.; Mehrotra, S. C. Mol. Phys. 2006, 18(20), 2835.
  2. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K.; Undre, B. P.; Khirade, P. W.; Mehrotra, S. C. Physica B 2007, 387, 203. https://doi.org/10.1016/j.physb.2006.04.005
  3. Undre, P.; Helambe, S. N.; Jagdale, S. B.; Khirade, P. W.; Mehrotra, S. C. Pramana J. Phys. 2007, 68, 851. https://doi.org/10.1007/s12043-007-0083-8
  4. Pawar V. P.; Mehrotra, S. C. J. Mol. Liq. 2002, 95, 63. https://doi.org/10.1016/S0167-7322(01)00282-3
  5. Baraldi, P.; Giorgini, M. G.; Manzini, D.; Marchetti, A.; Tassi, L. J. Sol. Chem. 2002, 31(11), 873. https://doi.org/10.1023/A:1021463705444
  6. Lomte, S. B.; Bawa, M. J.; Lande, M. K.; Arbad, B. R. J. Chem. Eng. Data 2009, 54, 127. https://doi.org/10.1021/je800571y
  7. Clara, R. A.; Marigliano, A. C. G.; Solimo, H. N. J. Chem. Thermodynamics 2008, 40, 292. https://doi.org/10.1016/j.jct.2007.06.009
  8. Ortega, J.; Paz-Andrade, M. I.; Rodriguez-Nunez, E.; Jimenez, E. Can. J. Chem. 1985, 63, 3354. https://doi.org/10.1139/v85-552
  9. Maharolkar, A. P.; Sudke, Y. S.; Kamble, S. P.; Tidar, A. L.; Murugkar, A. G.; Patil, S. S.; Khirade, P. W.; Mehrotra, S. C. Int. J. Chem. 2010, 2(2), 250.
  10. Dharne, G. M.; Maharolkar, A. P.; Patil, S. S.; Khirade, P. W.; Mehrotra, S. C. Int. J. Pharma and Bio Sci. 2010, 1(2), 1.
  11. Dharne, G. M.; Maharolkar, A. P.; Khirade, P. W.; Patil, S. S.; Mehrotra, S. C. Mat. Sci. Res. India 2008, 5(2), 391.
  12. Madhurima, V.; Viswanathan B.; Murthy, V. R. K. Phys. Chem. Liq. 2006, 44(5), 563. https://doi.org/10.1080/00319100500381615
  13. Gilani, A. G.; Paktinat, N.; Moghadam, M. J. Chem. Thermodynamics 2011, 43, 569. https://doi.org/10.1016/j.jct.2010.11.009
  14. Gemert, M. J. C. van, Adv. Mol. Relaxation Processes 1974, 6, 123. https://doi.org/10.1016/0001-8716(74)80006-4
  15. Bertolini, D.; Cassettari, M.; Salvetti, S.; Tombari, E.; Veronesis, S. Rev. Sci. Instrum. 1990, 61, 12.
  16. Berberian, J. G.; King, E. J. Non-Cryst. Solids 2002, 305, 10. https://doi.org/10.1016/S0022-3093(02)01082-7
  17. Shannon, C. E. Proc. IRE. 1949, 37, 10.
  18. Samulan, H. A. Proc. IRE. 1951, 39, 175. https://doi.org/10.1109/JRPROC.1951.231438
  19. Cole, R. H.; Berbarian, J. G.; Mashimo, S.; Chryssikos, G.; Burns, A.; Tombari, E. J. Appl. Phys. 1989, 66, 793. https://doi.org/10.1063/1.343499
  20. Debye, P. Polar Molecules; Chemical Catalog: New York, 1929.
  21. Mehrotra, S. C.; Boggs, J. E. J. Chem. Phys. 1977, 66, 5306. https://doi.org/10.1063/1.433913
  22. Bruggeman, D. A. G. Ann. Phys. (Leopz.) 1935, 5, 636.
  23. Putintsev, N. M.; Putintsev, D. N. Russian J. Phys. Chem. 2006, 80(12), 1949. https://doi.org/10.1134/S0036024406120144
  24. Marshall, William L.; Nature Proceedings. hdl: 10101/npre.2474, 2008.
  25. Glasstone, S.; Laidler, K. J.; Erying, H. The Theory of Rate Process; McGraw-Hill: New York, 1941.
  26. Hill, N. E.; Vaughan, W. E.; Price, A. H.; Davis, M. Dielectric Properties and Molecular Behavior; Van Nostrand: London, 1969.
  27. Sengwa, R. J.; Khatri, V.; Sonkhla, S. J. Sol. Chem. 2009, 38, 763. https://doi.org/10.1007/s10953-009-9408-1
  28. Sengwa, R. J.; Sonkhla, S.; Khatri, V. J. Mol. Liq. 2010, 151, 17. https://doi.org/10.1016/j.molliq.2009.10.011
  29. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K.; Undre, B. P.; Khirade, P. W.; Mehrotra, S. C. Main Group Chem. 2005, 4(3), 235. https://doi.org/10.1080/10241220600628640
  30. Gupta, M.; Vibhu, I.; Shukla, J. P. Phy. Chem. Liq. 2010, 48(4), 415. https://doi.org/10.1080/00319100500448166
  31. Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345. https://doi.org/10.1021/ie50458a036
  32. Sengwa, R. J. J. Mol. Liq. 2003, 108/1-3, 47. https://doi.org/10.1016/S0167-7322(03)00173-9

Cited by

  1. Dielectric Study of Allyl Chloride with 2-Pentanone and 2-Hexanone in Microwave Frequency Range vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3423