DOI QR코드

DOI QR Code

Anti-Obesity Effect of Ethyl Acetate Extracts from Agrimonia pilosa Ledeb. in 3T3-L1 Preadipocytes

3T3-L1 지방전구세포에서 용아초 에틸아세테이트 추출물의 항비만 효과

  • Lee, Jung-A (Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion) ;
  • Ahn, Eun-Kyung (Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion) ;
  • Hong, Seong-Su (Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion) ;
  • Oh, Joa-Sub (Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion)
  • 이정아 ((재) 경기과학기술진흥원 천연물신약연구소) ;
  • 안은경 ((재) 경기과학기술진흥원 천연물신약연구소) ;
  • 홍성수 ((재) 경기과학기술진흥원 천연물신약연구소) ;
  • 오좌섭 ((재) 경기과학기술진흥원 천연물신약연구소)
  • Received : 2011.10.11
  • Accepted : 2012.01.11
  • Published : 2012.02.29

Abstract

To evaluate the anti-obesity effect of Agrimonia pilosa L., this study investigated that ethyl acetate extract from A. pilosa L. (EAAP) suppresses lipid accumulation and inhibits expression of adipogenic marker genes, such as peroxisome proliferator activated receptor ${\gamma}$ (PPAR${\gamma}$), CCAAT-enhancer-binding protein ${\alpha}$ (C/EBP${\alpha}$), glucose transporter 4 (GLUT4), and adiponectin in 3T3-L1 preadipocytes. We demonstrated that EAAP inhibited adipocyte differentiation and expression of PPAR${\gamma}$ and C/EBP${\alpha}$ mRNA levels in a dose-dependent manner. In addition, EAAP reduced the PPAR${\gamma}$ transcriptional activity stimulated by rosiglitazone in HEK 293T cells and decreased the expression of GLUT4 and adiponectin in 3T3-L1 cells. These results suggest that EAAP inhibits preadipocyte differentiation and adipogenesis by blocking of PPAR${\gamma}$ and C/EBP${\alpha}$ gene expression in 3T3-L1 cells.

References

  1. Visscher TL, Seidell JC. 2001. The public health impact of obesity. Annu Rev Public Health 22: 355-375. https://doi.org/10.1146/annurev.publhealth.22.1.355
  2. Darlington GJ, Ross SE, MacDougald OA. 1998. The role of C/EBP genes in adipocyte differentiation. J Biol Chem 273: 30057-30060. https://doi.org/10.1074/jbc.273.46.30057
  3. Rosen ED, Hsu CH, Wang X, Sakai X, Freeman MW, Gonzalez FJ, Spiegelman BM. 2001. C/EBP$\alpha$ induces adipogenesis through PPAR: a unified pathway. Genes Dev 16: 22-26. https://doi.org/10.1101/gad.948702
  4. Morrison RF, Farmer SR. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr 130: 3116S-3121S. https://doi.org/10.1093/jn/130.12.3116S
  5. Rosen ED, Macdougald OA. 2006. Adipocyte differentiation from the in side out. Nat Rev Mol Cell Biol 7: 885-896. https://doi.org/10.1038/nrm2066
  6. An RB, Kim HC, Jeong GS, Oh SH, Oh H, Kim YC. 2005. Constituents of the aerial parts of Agrimonia pilosa. J Nat Prod 11: 196-199.
  7. Kato H, Li W, Koike M, Wang Y, Koike K. 2001. Phenolic glycosides from Agrimonia pilosa. Phytochemistry 71: 1925-1929. https://doi.org/10.1016/j.phytochem.2010.08.007
  8. Miyamoto K, Koshiura R, Ikeya Y, Taguchi H. 1985. Isolation of agrimoniin, an anritumour constituent, from the roots of Agrimonia pilosa Ledeb. Chem Pharm Bull 33: 3977-3982. https://doi.org/10.1248/cpb.33.3977
  9. Zhu L, Tan J, Wang B, He R, Liu Y, Zheng C. 2009. Antioxidant activities of aqueous extract from Agrimonia pilosa Ledeb and its fractions. Chem Biodivers 6: 1716-1726. https://doi.org/10.1002/cbdv.200800248
  10. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. 2000. Transcriptional regulation of adipogenesis. Genes & Dev 14: 1293-1307.
  11. Jeon T, Hwang SG, Hirai S, Matsui T, Yano H, Kawda T, Lim BU, Ki D. 2004. Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci 75: 3195-3203. https://doi.org/10.1016/j.lfs.2004.06.012
  12. Cowherd RM, Lyle RE, McGehee Jr RE. 1999. Molecular regulation of adipocyte differentiation. Semin Cell Dev Biol 10: 3-10. https://doi.org/10.1006/scdb.1998.0276
  13. Cornelius P, MacDougald OA, Lane MD. 1994. Regulation of adipocyte development. Annu Rev Nutr 14: 99-129. https://doi.org/10.1146/annurev.nu.14.070194.000531
  14. MacDougald OA, Lane MD. 1995. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 64: 345-373. https://doi.org/10.1146/annurev.bi.64.070195.002021
  15. Ranganathan G, Unal R, Pokrovskaya I, Yao-Borengasser A, Phanavanh B, Lecka-Czernik B, Rasouli N, Kern PA. 2006. The lipogenic enzymes DGAT1, FAS, and LPL in adipose tissue: effects of obesity, insulin resistance, and TZD treatment. J Lipid Res 47: 2444-2449. https://doi.org/10.1194/jlr.M600248-JLR200
  16. Bogan JS, Mckee AE, Lodish HF. 2001. Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells: regulation by amino acid concentrations. Mol Cell Biol 21: 4785-4806. https://doi.org/10.1128/MCB.21.14.4785-4806.2001
  17. Czech MP, Corvera S. 1999. Signaling mechanisms that regulate glucose transport. J Biol Chem 274: 1865-1868. https://doi.org/10.1074/jbc.274.4.1865
  18. Pessin JE, Thurmond DC, Elmendorf JS, Coker KJ, Okada S. 1999. Molecular basis of insulin-stimulated GLUT4 vesicle trafficking: location! location! location! J Biol Chem 274: 2593-2596. https://doi.org/10.1074/jbc.274.5.2593
  19. Shepherd PR, Kahn, BB. 1999. Glucose transporters and insulin action-implications for insulin resistance and diabetes mellitus. N Engl J Med 341: 248-257. https://doi.org/10.1056/NEJM199907223410406
  20. Kadowaki T, Yamauchi T. 2005. Adiponectin and adiponectin receptors. Endocr Rev 26: 439-451. https://doi.org/10.1210/er.2005-0005
  21. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. 2001. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50: 2094-2099. https://doi.org/10.2337/diabetes.50.9.2094

Cited by

  1. Peptide derived from desalinated boiled tuna extract inhibits adipogenesis through the downregulation of C/EBP-α and PPAR-γ in 3T3-L1 adipocytes vol.35, pp.5, 2015, https://doi.org/10.3892/ijmm.2015.2127
  2. Antioxidant and Antiobesity Activities of Various Color Resources Extracted from Natural Plants vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.165
  3. Anti-Obesity Effect of Ethyl Acetate Fraction from 50% Ethanol Extract of Fermented Curcuma longa L. in 3T3-L1 Cells vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1681
  4. Anti-obesity Effects of Curcuma longa L. Extracts through Inhibiting Adipogenic Transcription Factors vol.15, pp.2, 2017, https://doi.org/10.20402/ajbc.2016.0127
  5. Acylphloroglucinolated Catechin and Phenylethyl Isocoumarin Derivatives fromAgrimonia pilosa vol.79, pp.9, 2016, https://doi.org/10.1021/acs.jnatprod.6b00566
  6. Triglyceride Control Effect of Agrimonia eupatoria L. in Oleic Acid Induced NAFLD-HepG2 Model vol.28, pp.5, 2015, https://doi.org/10.7732/kjpr.2015.28.5.635
  7. Anti-oxidant and Anti-obesity Effects of Red Pepper and Zanthoxylum schinifolium Ethanol Extract, Main Ingredient of Mara Source vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1544