Prediction of an Essential Gene with Potential Drug Target Property in Streptococcus suis Using Comparative Genomics

  • Zaman, Aubhishek (Department of Genetic engineering and Biotechnology, University of Dhaka)
  • Received : 2012.09.21
  • Accepted : 2012.10.08
  • Published : 2012.12.31


Genes that are indispensable for survival are referred to as essential gene. Due to the momentous significance of these genes for cellular activity they can be selected potentially as drug targets. Here in this study, an essential gene for Streptococcus suis was predicted using coherent statistical analysis and powerful genome comparison computational method. At first the whole genome protein scatter plot was generated and subsequently, on the basis of statistical significance, a reference genome was chosen. The parameters set forth for selecting the reference genome was that the genome of the query (Streptococcus suis) and subject must fall in the same genus and yet they must vary to a good degree. Streptococcus pneumoniae was found to be suitable as the reference genome. A whole genome comparison was performed for the reference (Streptococcus pneumoniae) and the query genome (Streptococcus suis) and 14 conserved proteins from them were subjected to a screen for potential essential gene property. Among those 14 only one essential gene was found to be with impressive similarity score between reference and query. The essential gene encodes for a type of 'Clp protease'. Clp proteases play major roles in degrading misfolded proteins. Results found here should help formulating a drug against Strptococcus suis which is responsible for mild to severe clinical conditions in human. However, like many other computational studies, the study has to be validated furthermore through in vitro assays for concrete proof.


  1. Palmieri, C., Varaldo, P.E., and Facinelli, B. Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen. Front Microbiol 2, 235.
  2. Tsai, H.Y., Liao, C.H., Liu, C.Y., Huang, Y.T., Teng, L.J., and Hsueh, P.R. Streptococcus suis infection in Taiwan, 2000-2011. Diagn Microbiol Infect Dis.
  3. Choi, S.M., Cho, B.H., Choi, K.H., Nam, T.S., Kim, J.T., Park, M.S., Kim, B.C., Kim, M.K., and Cho, K.H. Meningitis caused by Streptococcus suis:report and review of the literature. J Clin Neurol 8, 79-82.
  4. Takamatsu, D. Diversity and virulence factors of Streptococcus suis. Nihon Saikingaku Zasshi 66, 7-21.
  5. Fernandez-Ferro, J., Lopez-Gonzalez, F.J., Pardo, F., and Pias-Peleteiro, J.M. [Acute Streptococcus suis meningitis in a pig breeder]. Enferm Infecc Microbiol Clin 29, 396-397.
  6. Ngo, T.H., Tran, T.B., Tran, T.T., Nguyen, V.D., Campbell, J., Pham, H.A., Huynh, H.T., Nguyen, V.V., Bryant, J.E., Tran, T.H., et al. Slaughterhouse pigs are a major reservoir of Streptococcus suis serotype 2 capable of causing human infection in southern Vietnam. PLoS One 6, e17943.
  7. Nakayama, T., Takeuchi, D., Akeda, Y., and Oishi, K. Streptococcus suis infection induces [corrected] bacterial accumulation in the kidney. Microb Pathog 50, 87-93.
  8. Muckle, A., Giles, J., Lund, L., Stewart, T., and Gottschalk, M. Isolation of Streptococcus suis from the urine of a clinically ill dog. Can Vet J 51, 773-774.
  9. Xu, M., Wang, S., Li, L., Lei, L., Liu, Y., Shi, W., Wu, J., Rong, F., Sun, G., Xiang, H., et al. Secondary infection with Streptococcus suis serotype 7 increases the virulence of highly pathogenic porcine reproductive and respiratory syndrome virus in pigs. Virol J 7, 184.
  10. Tan, J.H., Yeh, B.I., and Seet, C.S. Deafness due to haemorrhagic labyrinthitis and a review of relapses in Streptococcus suis meningitis. Singapore Med J 51, e30-33.
  11. Zhang, C.T., and Zhang, R. (2008). Gene essentiality analysis based on DEG, a database of essential genes. Methods Mol Biol 416, 391-400.
  12. Zhang, R., and Lin, Y. (2009). DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res 37, D455-458.
  13. Zhang, R., Ou, H.Y., and Zhang, C.T. (2004). DEG: a database of essential genes. Nucleic Acids Res 32, D271-272.
  14. Peterson, J.D., Umayam, L.A., Dickinson, T., Hickey, E.K., and White, O. (2001). The Comprehensive Microbial Resource. Nucleic Acids Res 29, 123-125.
  15. Maurizi, M.R., Thompson, M.W., Singh, S.K., and Kim, S.H. (1994). Endopeptidase Clp: ATP-dependent Clp protease from Escherichia coli. Methods Enzymol 244, 314-331.
  16. Maurizi, M.R., Clark, W.P., Katayama, Y., Rudikoff, S., Pumphrey, J., Bowers, B., and Gottesman, S. (1990). Sequence and structure of Clp P, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 265, 12536-12545.
  17. Gottesman, S., Roche, E., Zhou, Y., and Sauer, R.T. (1998). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12, 1338-1347.
  18. Clarke, A.K. The chloroplast ATP-dependent Clp protease in vascular plants - new dimensions and future challenges. Physiol Plant 145, 235-244.
  19. Wu, H., Ji, Y., Du, J., Kong, D., Liang, H., and Ling, H.Q. ClpC1, an ATPdependent Clp protease in plastids, is involved in iron homeostasis in Arabidopsis leaves. Ann Bot 105, 823-833.
  20. Sjogren, L.L., and Clarke, A.K. Assembly of the chloroplast ATP-dependent Clp protease in Arabidopsis is regulated by the ClpT accessory proteins. Plant Cell 23, 322-332.
  21. Sjogren, L.L., Stanne, T.M., Zheng, B., Sutinen, S., and Clarke, A.K. (2006). Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis. Plant Cell 18, 2635-2649.
  22. Andersson, F.I., Tryggvesson, A., Sharon, M., Diemand, A.V., Classen, M., Best, C., Schmidt, R., Schelin, J., Stanne, T.M., Bukau, B., et al. (2009). Structure and function of a novel type of ATP-dependent Clp protease. J Biol Chem 284, 13519-13532.
  23. Skinner, M.M., and Trempy, J.E. (2001). Expression of clpX, an ATPase subunit of the Clp protease, is heat and cold shock inducible in Lactococcus lactis. J Dairy Sci 84, 1783-1785.
  24. Porankiewicz, J., Wang, J., and Clarke, A.K. (1999). New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32, 449-458.
  25. Gerth, U., Kruger, E., Derre, I., Msadek, T., and Hecker, M. (1998). Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 28, 787-802.
  26. Zellmeier, S., Schumann, W., and Wiegert, T. (2006). Involvement of Clp protease activity in modulating the Bacillus subtilissigmaw stress response. Mol Microbiol 61, 1569-1582.
  27. Kruger, E., Zuhlke, D., Witt, E., Ludwig, H., and Hecker, M. (2001). Clpmediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J 20, 852-863.
  28. Miethke, M., Hecker, M., and Gerth, U. (2006). Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. J Bacteriol 188, 4610-4619.
  29. Gerth, U., Kirstein, J., Mostertz, J., Waldminghaus, T., Miethke, M., Kock, H., and Hecker, M. (2004). Fine-tuning in regulation of Clp protein content in Bacillus subtilis. J Bacteriol 186, 179-191.
  30. Kock, H., Gerth, U., and Hecker, M. (2004). MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis. Mol Microbiol 51, 1087-1102.
  31. Kirstein, J., Zuhlke, D., Gerth, U., Turgay, K., and Hecker, M. (2005). A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J 24, 3435-3445.
  32. Thanassi, J.A., Hartman-Neumann, S.L., Dougherty, T.J., Dougherty, B.A., and Pucci, M.J. (2002). Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res 30, 3152-3162.
  33. Molzen, T.E., Burghout, P., Bootsma, H.J., Brandt, C.T., van der Gaast-de Jongh, C.E., Eleveld, M.J., Verbeek, M.M., Frimodt-Moller, N., Ostergaard, C., and Hermans, P.W. Genome-wide identification of Streptococcus pneumoniae genes essential for bacterial replication during experimental meningitis. Infect Immun 79, 288-297.
  34. Song, J.H., Ko, K.S., Lee, J.Y., Baek, J.Y., Oh, W.S., Yoon, H.S., Jeong, J.Y., and Chun, J. (2005). Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells 19, 365-374.
  35. Bijlsma, J.J., Burghout, P., Kloosterman, T.G., Bootsma, H.J., de Jong, A., Hermans, P.W., and Kuipers, O.P. (2007). Development of genomic array footprinting for identification of conditionally essential genes in Streptococcus pneumoniae. Appl Environ Microbiol 73, 1514-1524.
  36. Lee, M.S., Dougherty, B.A., Madeo, A.C., and Morrison, D.A. (1999). Construction and analysis of a library for random insertional mutagenesis in Streptococcus pneumoniae: use for recovery of mutants defective in genetic transformation and for identification of essential genes. Appl Environ Microbiol 65, 1883-1890.
  37. Porankiewicz, J., Schelin, J., and Clarke, A.K. (1998). The ATP-depen dent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Mol Microbiol 29, 275-283.
  38. Shapiro, J.A. (1993). A role for the Clp protease in activating Mu-mediated DNA rearrangements. J Bacteriol 175, 2625-2631.
  39. Kaakoush, N.O., Deshpande, N.P., Wilkins, M.R., Raftery, M.J., Janitz, K., and Mitchell, H. Comparative analyses of Campylobacter concisusstrains reveal the genome of the reference strain BAA-1457 is not representative of the species. Gut Pathog 3, 15.
  40. O'Brien, S.J., Womack, J.E., Lyons, L.A., Moore, K.J., Jenkins, N.A., and Copeland, N.G. (1993). Anchored reference loci for comparative genome mapping in mammals. Nat Genet 3, 103-112.
  41. Hu, P., Yang, M., Zhang, A., Wu, J., Chen, B., Hua, Y., Yu, J., Chen, H., Xiao, J., and Jin, M. Complete genome sequence of Streptococcus suis serotype 3 strain ST3. J Bacteriol 193, 3428-3429.