DOI QR코드

DOI QR Code

EQUIDISTRIBUTION OF PERIODIC POINTS OF SOME AUTOMORPHISMS ON K3 SURFACES

  • Received : 2010.10.31
  • Published : 2012.03.31

Abstract

We say (W, {${\phi}_1,\;{\ldots}\;,{\phi}_t$}) is a polarizable dynamical system of several morphisms if ${\phi}_i$ are endomorphisms on a projective variety W such that ${\otimes}{\phi}_i^*L$ is linearly equivalent to $L^{{\otimes}q}$ for some ample line bundle L on W and for some q > t. If q is a rational number, then we have the equidistribution of small points of given dynamical system because of Yuan's work [13]. As its application, we can build a polarizable dynamical system of an automorphism and its inverse on a K3 surface and can show that its periodic points are equidistributed.

Keywords

equidistribution;height;dynamical system;K3 surface;auto-morphism

References

  1. A. Baragar and D. McKinnon, K3 surfaces, rational curves, and rational points, J. Number Theory 130 (2010), no. 7, 1470-1479. https://doi.org/10.1016/j.jnt.2010.02.014
  2. M. H. Baker and R. Rumely, Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 3, 625-688. https://doi.org/10.5802/aif.2196
  3. Y. Bilu, Limit distribution of small points on algebraic tori, Duke Math. J. 89 (1997), no. 3, 465-476. https://doi.org/10.1215/S0012-7094-97-08921-3
  4. A. Chambert-Loir, Mesures et equidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215-235.
  5. W. Fulton, Intersection Theory, Second edition, Springer-Verlag, Berlin, 1998.
  6. N. Fakhruddin, Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc. 18 (2003), no. 2, 109-122.
  7. C. Favre and J. Rivera-Letelier, Equidistribution quantitative des points de petite hau- teur sur la droite projective, Math. Ann. 335 (2006), no. 2, 311-361. https://doi.org/10.1007/s00208-006-0751-x
  8. S. Kawaguchi, Canonical heights, invariant currents, and dynamical eigensystems of morphisms for line bundles, J. Reine Angew. Math. 597 (2006), 135-173.
  9. J. H. Silverman, The Arithmetic of Dynamical System, Springer, 2007.
  10. J. H. Silverman, Rational points on K3 surfaces: a new canonical height, Invent. Math. 105 (1991), no. 2, 347-373. https://doi.org/10.1007/BF01232270
  11. J. H. Silverman and M. Hindry, Diophantine Geometry: An introduction, Springer, 2000.
  12. L. Szpiro, E. Ullmo, and S. Zhang, Equirepartition des petits points, Invent. Math. 127 (1997), no. 2, 337-347. https://doi.org/10.1007/s002220050123
  13. X. Yuan, Big line bundles over arithmetic varieties, Invent. Math. 173 (2008), no. 3, 603-649. https://doi.org/10.1007/s00222-008-0127-9
  14. S. Zhang, Small points and adelic metrics J. Algebraic Geom. 4 (1995), no. 2, 281-300.

Cited by

  1. HEIGHT ESTIMATES FOR DOMINANT ENDOMORPHISMS ON PROJECTIVE VARIETIES vol.32, pp.1, 2016, https://doi.org/10.7858/eamj.2016.007
  2. The equidistribution of small points for strongly regular pairs of polynomial maps vol.275, pp.3-4, 2013, https://doi.org/10.1007/s00209-013-1169-2