# THE NUMBER OF POINTS ON ELLIPTIC CURVES EA0:y2=x3+Ax OVER $\mathbb{F}$p MOD 24

Park, Hwa-Sin;You, Soon-Ho;Kim, Dae-Yeoul;Kim, Min-Hee

• Accepted : 2012.02.07
• Published : 2012.03.25
• 28 7

#### Abstract

Let $E_A^B$ denote the elliptic curve $E_A^B:y^2=x^3+Ax+B$. In this paper, we calculate the number of points on elliptic curves $E_A^0:y^2=x^3+Ax$ over $\mathbb{F}_p$ mod 24. For example, if $p{\equiv}1$ (mod 24) is a prime, $3t^2{\equiv}1$ (mod p) and A(-1 + 2t) is a quartic residue modulo p, then the number of points in $E_A^0:y^2=x^3+Ax$ is congruent to 0 modulo 24.

elliptic curves

#### References

1. H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math., 138, Springer-verlag, Berlin, 1993, 198-199.
2. L. E. Dickson, Criteria for the irreducibility of functions in a finite field, Bull. Amer. Math. Soc. 13(1906), 1-8. https://doi.org/10.1090/S0002-9904-1906-01403-3
3. M. Demirci, Y. N. Ikikardes, G. Soydan and I. N. Cangul, Frey Elliptic Curves $E : y^{2} = x^{3} - n^{2}x$ on finite field $\mathbb{F}_{p}$ where $p\equiv1$ (mod 4) is prime, to be printed.
4. M. Demirci, G. Soydan and I. N. Cangul, Rational points on Elliptic Curves $E:y^{2}-x^{3}-n^{2}$ in $E:y^{2}=x^{3}+cx over\/\mathbb{F}_{p}\/mod\/8$ where $p\equiv1$ (mod 4) is prime, Rocky Mountain Journal of Mathematics, 37, no 5, 2007.
5. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1981.
6. I. Inam, G. Soydan, M. Demirci, O. Bizim and I. N. Cangul, Corrigendum on "The Number of Points on Elliptic Curves $E:y^{2}=x^{3}+cx over\/F_{p}\/mod\/8$ ", Commun. Korean Math. Soc. 22 (2007), no. 2, 207-208. https://doi.org/10.4134/CKMS.2007.22.2.207
7. N. Y. Ikikardes, G. Soydan, M. Demirci and I. N. Cangul, Classification of the Bachet Elliptic Curves $y^{2}=x^{3}+a^{3}\/in\/\mathbb{F}_{p},\/where\/p\equiv1\/(mod 6)$ is Prime, Int. J. Math. Sci. (WASET) 1 (2007), no. 4, 239-241.
8. N. Y. Ikikardes, G. Soydan, M. Demirci and I. N. Cangul, Rational points on Frey Elliptic Curves $E:y^{2}=x^{3}-n^{2}x$, Adv. Stud. Contemp. Math. (Kyung- shang) 14 (2007), no. 1, 69-76.
9. A. W. Knapp, Elliptic curves, Princeton Uinversity Press, New Jersey 1992.
10. D. Kim, J. K. Koo and Y. K. Park, On the elliptic curve modulo p, Journal of Number Theory 128(2008), 945-953. https://doi.org/10.1016/j.jnt.2007.04.015
11. H. Park, D. Kim and E. Lee, The numbers of points elliptic curves $E:y^{2}=x^{3}+cx\/over\/\mathbb{F}_{p}\/mod\/8$, Commun. Korean Math. Soc. 18 (2003), 31-37. https://doi.org/10.4134/CKMS.2003.18.1.031
12. R. Schoof, Counting points on elliptic curves over finite fields, Journal de The-orie des Nomvres de Bordeaux, 7(1995), 219-254. https://doi.org/10.5802/jtnb.142
13. J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathe-matics, 106. Springer-Verlag, New York, 1992.
14. L. Stickelberger, Uber eine neue Eigenschaft der Diskriminanten algebraischer Zahlkorper, in:Verh. I. Internat. Math. Kongress, Zurich, 1987, 182-193.

#### Cited by

1. THE NUMBER OF POINTS ON ELLIPTIC CURVES y2= x3+ Ax AND y2= x3+ B3MOD 24 vol.28, pp.3, 2013, https://doi.org/10.4134/CKMS.2013.28.3.433