Tritium Fuel Cycle Technology of ITER Project

ITER 사업의 삼중수소 연료주기 기술

  • 윤세훈 (국가핵융합연구소 ITER 한국사업단) ;
  • 장민호 (국가핵융합연구소 ITER 한국사업단) ;
  • 강현구 (국가핵융합연구소 ITER 한국사업단) ;
  • 김창석 (국가핵융합연구소 ITER 한국사업단) ;
  • 조승연 (국가핵융합연구소 ITER 한국사업단) ;
  • 정기정 (국가핵융합연구소 ITER 한국사업단) ;
  • 정흥석 (한국원자력연구원) ;
  • 송규민 (한국수력원자력 중앙연구원)
  • Received : 2012.01.26
  • Accepted : 2012.02.24
  • Published : 2012.02.28


The ITER fuel cycle is designed for DT operation in equimolar ratio. It involves not only a group of fuelling system and torus cryo-pumping system of the exhaust gases through the divertor from the torus in tokamak plant, but also from the exhaust gas processing of the fusion effluent gas mixture connected to the hydrogen isotope separation in cryogenic distillation to the final safe storage & delivery of the hydrogen isotopes in tritium plant. Tritium plant system supplies deuterium and tritium from external sources and treats all tritiated fluids in ITER operation. Every operation and affairs is focused on the tritium inventory accountancy and the confinement. This paper describes the major fuel cycle processes and interfaces in the tritium plant in aspects of upcoming technologies for future hydrogen and/or hydrogen isotope utilization.


ITER fuel cycle;Tokamak exhaust processing;Isotope separation system;Storage and delivery system;Detritiation system;Fueling system


Supported by : 교육과학기술부, 지식경제부


  1. ITER IDM Document (ITER_D_2X6K67), Plant Description (PD), Chap. 10 Fuel Cycle and Radiological Monitoring (2009).
  2. D. Babineau, S. Maruyama, R. Pearce, M. Glugla, L. Bo, B. Rogers, S. Willms, G. Piazza, T. Yamanishi, S.H. Yun, L. Worth, and W. Shu, "Review of the ITER Fuel Cycle," IAEA FEC 2010, 2010.
  3. M. Glugla, D. Babineau, L. Bo, S. Maruyama, R. Pearce, G. Piazza, B. Rogers, S. Willms, T. Yamanishi, and S.-H. Yun, "Review of the ITER D-T Fuel Cycle Systems and Recent Progress," Tritium 2010, Nara, Japan, 2010.
  4. S. Maruyama, Y. Yang, R.A. Pitts, M. Sugihara, S. Putvinski, S. Carpentier-Chouchana, B. Li, W. Li, L. Baylor, S.J. Meitner, C. Day, B. laBombard, and M. Reinke, "ITER Fuelling System Design and Challenges-Gas and Pellet Injection and Disruption Mitigation," IAEA FEC 2010, 2010.
  5. S. Konishi, M. Glugla, and T. Hayashi, "Fuel Cycle Design for ITER and Its Extrapolation to DEMO," Fusion Engineering and Design, Vol. 83, 2008, pp. 954-958.
  6. M. Glugla, A. Antipenkov, S. Beloglazov, C. Caldwell-Nichols, I.R. Cristescu, I. Cristescu, C. Day, L. Doerr, J.-P. Girard, and E. Tada, "The ITER Tritium System," Fusion Engineering and Design, Vol. 82, 2007, pp. 472-487.
  7. H. Yoshida, O. Kveton, J. Koonce, D. Holland, and R. Haange, "Status of the ITER Plant Design", Fusion Engineering and Design, Vol. 39-40, 1998, pp. 875-882.
  8. H. Chung, M. Shim, H. Yoshida, H. Jin, J. Lee, D.-H. Ahn, K.-K. Kim, K.-M. Song, D.J. Kim, M.H. Chang, H.-G. Kang, S.-H. Yun, S. Cho, "Korea's Progress on the ITER Tritium System," Fusion Engineering and Design, Vol. 84, 2009, pp. 599-603.
  9. H. Chung, D. Chung, D. Koo, J.S. Lee, M. Shim, S. Cho, K.J. Jung, S.-H. Yun, "Storage and Delivery of Hydrogen Isotopes," Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 3, 2011, pp. 372-379.

Cited by

  1. Hydrogen Brittleness on Welding Part for SDS Bottles vol.24, pp.2, 2013,
  2. Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage vol.24, pp.2, 2013,
  3. Hydrogen Absorption/Desorption and Heat Transfer Modeling in a Concentric Horizontal ZrCo Bed vol.24, pp.4, 2013,
  4. Study on the Characteristics of Catalyst Reaction for Hydrogen Recovery from Nuclear Fusion Exhaust Gas vol.26, pp.5, 2015,
  5. Characteristics of a Hydrogen Isotope Storage and Accountancy System vol.26, pp.6, 2015,
  6. Dehydriding Performance in a Depleted Uranium Bed vol.27, pp.1, 2016,