DOI QR코드

DOI QR Code

Growth, Morphology, Cross Stress Resistance and Antibiotic Susceptibility of K. pneumoniae Under Simulated Microgravity

Kalpana, Duraisamy;Cha, Hyo-Jung;Park, Moon-Ki;Lee, Yang-Soo

  • Received : 2011.12.21
  • Accepted : 2012.03.21
  • Published : 2012.03.31

Abstract

Spaceflights results in the reduction of immune status of human beings and increase in the virulence of microorganisms, especially gram negative bacteria. The growth of Klebsiella pneumoniae is enhanced by catecholamines and during spaceflight, elevation in the levels of cortisols occurs. So it is necessary to know the changes in physiology, virulence, antibiotic resistance and gene expression of K. pneumoniae under microgravity conditions. The present study was undertaken to study effect of simulated microgravity on growth, morphology, antibiotic resistance and cross stress resistance of K. pneumoniae to various stresses. The susceptibility of simulated microgravity grown K. pneumoniae to ampicillin, penicillin, streptomycin, kanamycin, hygromycin and rifampicin were evaluated. The growth of bacteria was found to be fast compared with normal gravity grown bacteria and no significant changes in the antibiotic resistance were found. The bacteria cultured under microgravity conferred cross stress resistance to acid, temperature and osmotic stress higher than the normal gravity cultured bacteria but the vice versa was found in case of oxidative stress.

Keywords

Simulated microgravity;K. pneumoniae;growth analysis;antibiotic sensitivity;TEM;SEM

References

  1. Benoit, M. R., Klaus, D. M., 2007, Microgravity, bacteria and the influence of motility, Adv. Space Resear., 39, 1225-1232. https://doi.org/10.1016/j.asr.2006.10.009
  2. Brown, R. B., Klaus, D., Todd, P., 2002, Effects of space flight, clinorotation and centrifugation on the substrate utilization efficiency of E. coli, Microgravity Sci. Technol., 13(4), 24-29. https://doi.org/10.1007/BF02881678
  3. Castro, V. A., Thrasher, A. N., Healy, M., Ott, C. M., Pierson, D. L., 2004, Microbial characterization during the early habitation of the international space station, Micro. Ecol., 47, 119-126. https://doi.org/10.1007/s00248-003-1030-y
  4. Crabbe, A., Pycke, B., Houdt, R. V., Monsieurs, P., Nickerson, C., Leys, N., Cornelis, P., 2010, Response of Pseudomonas aeruginosa PAO1 to low shear modeled microgravity involves AlgU regulation, Environ. Microbiol., 12(6), 1545- 1564.
  5. Gueguinou, N., HuinSchohn, C., Bascove, M., Bueb, J. L., Tschirhart, E., Legrand-Frossi, C., Frippiat, J. P., 2009, Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit, J. Leukocyte Biol., 86, 1027-1038. https://doi.org/10.1189/jlb.0309167
  6. Ilyin, V. K., 2005, Microbiological status of cosmonauts during orbital spaceflights on Salyut and Mir orbital stations, ActaAstronautica, 56, 839-850. https://doi.org/10.1016/j.actaastro.2005.01.009
  7. Juergensmeyer, M. A., Juergensmeyer, E.A., Guikema, J. A., 1999, Long-term exposure to spaceflight conditions affects bacterial response to antibiotics, Microgravity Sci. Technol., 12(1), 41-47.
  8. Kacena, M. A., Todd, P., 1999, Gentamicin: effect on E. coli in space, Microgravity Sci. Technol., 12(3-4), 135-137.
  9. Klaus, D. M., Lutteges, M. W., Stodieck, L. S., 1994, Investigation of space flight effects on Escherichia coli growth, Society of Automotive engineers International Tech. Paper series SAE publications, 1-9.
  10. Lapchine, L., Moatti, N., Gasset, G., Richoilley G.,Templier, J., Tixador, R., 1985, Antibiotic activity in space, Drugs under experimental and clinical research, 933-938.
  11. Mattoni, R. H. T., 1968, Spaceflight effects and gamma radiation interaction on growth and induction of lysogenic bacteria, Bioscience, 18(6), 602-608. https://doi.org/10.2307/1294308
  12. Mennigmann, H. D., Heise, N., 1994, Response of growing bacteria to reduction in gravity, Fifth European symposium on life sciences research in space, ESA-366 83-87.
  13. Novikova, N. D., 2004, Review of the knowledge of Microbial contamination of the Russian Manned Spacecraft, Microb. Ecol., 47, 127-132. https://doi.org/10.1007/s00248-003-1055-2
  14. Nickerson, C. A., Ott, C. A., Mister, S. J., Morrow, B. J., Keliher, L. B., Person, D. L., 2000, Microgravity as a novel environmental signal affecting Salmonella entericaserovartyphimurium virulence, Infec. Immun., 3147-3152.
  15. Nickerson, C. A., Ott, M. C., Wilson, J. W., Ramamurthy, R., Pierson, D. L., 2004, Microbial responses to microgravity and other low shear environment, Microbiol. Molecular Biol. Rev., 345-361.
  16. Pierson, D. L., Bassinger, V. J., Molina, T. C., Gunter, E. G., Groves, T. O., Cioletti, L. J., Mishra, S. K., 1993, Preflight and post flight microbiological results from 25 space shuttle crews, (SAE 932139) SAE Technical paper series paper, 932139, DOI:10.4271/932139.
  17. Polikarpov, N. A., Bragina, M. P., 1989, Sensitivity to antibiotics of opportunistic human indigeneous microorganisms before and after isolation in an airtight environment, In USSR space life sciences digest NASA contractor report 3922(28), 61, NASA.
  18. Rosado, H., Stapleton, P. D., Taylor, P. W., 2006, Effect of simulated microgravity on the virulence properties of the opportunistic bacterial pathogen Staphylococcus aureus, Proceeding of the 57th international astronautical federation congress, 1.7/A2.7.06.
  19. Rosado, H., Doyle, M., Hinds, J., Taylor, P. W., 2010, Low-shear modeled microgravity alters expression of virulence determinants of Staphylococcus aureus, ActaAstronautica, 66, 408-413. https://doi.org/10.1016/j.actaastro.2009.06.007
  20. Taylor, G., 1974, Recovery of medical important microorganisms from Apollo astronauts, Aerospace Medicine, 45(8), 824-882.
  21. Tixader, R., Richoillery, G., Gasset, G., Templier, J., Bes, J. C., Moatti, N., Lapchine, L., 1985, Study of minimal inhibitory concentrations of antibiotics on bacteria cultivated invitroin space (Cytos 2 experiment), Aviat Space Environ. Med., 56(8), 748-751.
  22. Vukanti, R., Mintz, E., Leff, L., 2008, Changes in gene expression of E. coli under conditions of modeled reduced gravity, Microgravity Sci. Technol., 20, 41-57. https://doi.org/10.1007/s12217-008-9012-9
  23. Wilson, J. W., Ott, C. M., Ramamurthy, R., Porwollik, S., Clelland, M. M., Pierson, D. L., Nickerson, C. A., 2002, Low-shear modeled microgravity alters the Salmonella entericaserovartyphimurium stress response in an RpoS-independent manner, Appl. Environ. Microbiol., 5408-5416.
  24. Wilson, J. W., Ott, C. M., Bentrup, H. Z., Ramamurthy, R., Quick, L., Porwollik, S., Cheng, P., Clelland, M. M., Tsaprailis, G., Radabaugh, T., Hunt, A., Fernandez, D., Richter, Shah, M., Kiloyne, M., Joshi, L., Gonzalez, M. N., Hing, S., Parra, M., Dumars, P., Norwood, P., Bober, R., Devich, J., Ruggles, A., Goulart, C., Rupert, M., Stodieck, L., Stafford, P., . Catella, L., Schurr, M. J., Buchanan, K., Morici, L., McCracken, J., Allen, P., Baker-Coleman, C., Hammond, T., Vogel, J., Nelson, R., Pierson, D. L., Pieper, H. M. S., Nickerson, C. A., 2007, Space flight alters bacterial gene expression and virulence and reveals a role for global regulator, Hfq. PNAS, 104(41), 16299-16304. https://doi.org/10.1073/pnas.0707155104
  25. Wilson, J. W., Ramamurthy, R., Porwollik, S., Clelland, M. M., Hammond, T., Allen, P., Ott, M. C., Pierson, D. L., Nickerson C. A., 2002a, Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon, PNAS, 99(21), 13807-13812. https://doi.org/10.1073/pnas.212387899

Acknowledgement

Supported by : National Research Foundation of Korea