CO Oxidation of Catalytic Filters Consisting of Ni Nanoparticles on Carbon Fiber

  • Seo, Hyun-Ook (Department of Chemistry, Sungkyunkwan University) ;
  • Nam, Jong-Won (Department of Chemistry, Sungkyunkwan University) ;
  • Kim, Kwang-Dae (Department of Chemistry, Sungkyunkwan University) ;
  • Kim, Young-Dok (Department of Chemistry, Sungkyunkwan University) ;
  • Lim, Dong-Chan (Materials Processing Division, Korea Institute of Materials Science)
  • Received : 2011.12.21
  • Accepted : 2012.01.02
  • Published : 2012.04.20


Catalytic filters consisting of Ni nanoparticle and carbon fiber with different oxidation states of Ni (either metallic or oxidic) were prepared using a chemical vapor deposition process and various post-annealing steps. CO oxidation reactivity of each sample was evaluated using a batch type quartz reactor with a gas mixture of CO (500 mtorr) and $O_2$ (3 torr) at $300^{\circ}C$. Metallic and oxidic Ni showed almost the same CO oxidation reactivity. Moreover, the CO oxidation reactivity of metallic sample remained unchanged in the subsequently performed second reaction experiment. We suggested that metallic Ni transformed into oxidic state at the initial stage of the exposure to the reactant gas mixture, and Ni-oxide was catalytically active species. In addition, we found that CO oxidation reactivity of Ni-oxide surface was enhanced by increase in the $H_2O$ impurity in the reactor.


  1. Ertl, G. Adv. Catal. 2000, 45, 1.
  2. Chen, M. S.; Wang, X. V.; Zhang, L. H.; Tang, Z. Y.; Wan, H. L. Langmuir 2010, 26, 18113.
  3. Gao, F.; Goodman, D. W. Langmuir 2010, 26, 16540.
  4. Gao, F; Wang, Y.; Cai, Y.; Goodman, D. W. J. Phys. Chem. 2009, 113, 174.
  5. McClure, S. M.; Goodman, D. W. Chem. Phys. Lett. 2009, 469, 1.
  6. Ackermann, M. D.; Pedersen, T. M.; Hendriksen, B. L. M.; Robach, O.; Bobaru, S. C.; Popa, I.; Quiros, C.; Kim, H.; Hammer, B.; Ferrer, S.; Frenken, J. W. M. Phys. Rev. Lett. 2005, 95, 4.
  7. Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Park, J. Y.; Li, Y. M.; Bluhm, H.; Bratlie, K. M.; Zhang, T. F.; Somorjai, G. A. Angew. Chem. Int. Ed. 2008, 47, 8893.
  8. Hendriksen, B. L. M.; Frenken, J. W. M. Phys. Rev. Lett. 2002, 89, 4.
  9. Over, H.; Balmes, O.; Lundgren, E. Surf. Sci. 2009, 603, 298.
  10. Over, H.; Kim, Y. D.; Seitsonen, A. P.; Wendt, S.; Lundgren, E.; Schmid, M.; Varga, P.; Morgante, A.; Ertl, G. Science 2000, 287, 1474.
  11. Knudsen, J.; Merte, L. R.; Peng, G. W.; Vang, R. T.; Resta, A.; Laegsgaard, E.; Andersen, J. N.; Mavrikakis, M.; Besenbacher, F. Acs Nano. 2010, 4, 4380.
  12. Peng, G. W.; Merte, L. R.; Knudsen, J.; Vang, R. T.; Laegsgaard, E.; Besenbacher, F.; Mavrikakis, M. J. Phys. Chem. C 2010, 114, 21579.
  13. Zhao, B.; Ke, X.-K.; Bao, J.-H.; Wang, C.-L.; Dong, L.; Chen, Y.- W.; Chen, H.-L. J. Phys. Chem. C 2009, 113, 14440.
  14. Wang, D. S.; Xu, R.; Wang, X.; Li, Y. D. Nanotechnol. 2006, 17, 979.
  15. Rajasree, R.; Hoebink, J. H. B. J.; Schouten, J. C. J. Catal. 2004, 223, 36.
  16. Gong, X. J. Chem. Phys. 2003, 119, 6324.
  17. Bergeld, J.; Kasemo, B.; Chakarov, D. V. Surf. Sci. 2001, 495, L815.
  18. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Hankbook of X-ray Photoelectron Spectroscopy; Chastain, J., King, R. C., Jr., Eds.; Physical Electronics, Inc: Minnesota, U.S.A., 1995.
  19. Greiner, M. T.; Helander, M. G.; Wang, Z.-B.; Tang, W.-M.; Lu, Z.-H. J. Phys. Chem. C 2010, 114, 19777.
  20. Biesinger, M. C.; Payne, B. P.; Lau, L. W. M.; Gerson, A.; Smart, R. S. C. Surf. Interf. Anal. 2009, 41, 324.

Cited by

  1. A new apparatus for carbon monoxide oxidation studies performed over thin film catalysts vol.24, pp.12, 2013,