DOI QR코드

DOI QR Code

Solubilization of 4-Alkylbenzoic Acid Isomers by the Aqueous Solution of Tetradecyltrimethylammonium Bromide

테트라데실트리메틸암모늄 브로마이드의 수용액에서 4-알킬벤조산 이성질체들의 가용화에 대한 연구

  • Received : 2011.12.05
  • Accepted : 2012.02.06
  • Published : 2012.04.20

Abstract

The interaction of 4-alkylbenzoic acid isomers with the micellar system of TTAB (tetradecyltrimethylammonium bromide) was studied by the UV/Vis spectrophotometric method. The solubilization constants ($K_s$) of 4-alkylbenzoic acid isomers into the TTAB micellar system and the critical micelle concentration (CMC) of TTAB have been measured with the change of temperature. Various thermodynamic parameters have been calculated and analyzed from those measurements. The results show that the values of ${\Delta}G^o{_s}$ for the solubilization of all the isomers are negative and the values of ${\Delta}H^o{_s}$ and ${\Delta}S^o{_s}$ are all positive within the measured temperature range. The effects of additives (n-butanol and NaCl) on the solubilization of 4-alkylbenzoic acid isomers have been also measured. There was a great change on the values of $K_s$ and CMC simultaneously with these additives. From these changes we can postulate that the solubilization sites of 4-alkylbenzoic acids are the core or deep palisade region of the TTAB micelle.

Keywords

TTAB;Solubilization constant;4-Alkylbenzoic acid;Critical micelle concentration;Isostructural temperature

References

  1. Lee, B. H; Christian, S. D.; Tucker, E. E.; Scamehorn, J. F. Langmuir 1991, 7, 1332. https://doi.org/10.1021/la00055a007
  2. Mehta, S. K.; Chaudhary, S.; Kumar, R.; Bhasin, K. K. J. Phys. Chem. B 2009, 113, 7188. https://doi.org/10.1021/jp811310f
  3. Chakraborty, T.; Chakraborty, I.; Moulik, S. P.; Ghosh, S. Langmuir 2009, 25, 3062. https://doi.org/10.1021/la803797x
  4. Chaghi, R.; Menorval, L. C.; Charnay, C.; Derrin, G.; Zajac, J. Langmuir 2009, 25, 4868. https://doi.org/10.1021/la803451q
  5. Su, T. L.; Lai, C. C.; Tsai, P. C. J. Surfact. Deterg. 2011, 14, 363. https://doi.org/10.1007/s11743-011-1266-3
  6. Gharanjig, K.; Sadeghi-Kiakhani, M,; Tehrani-Bagha, A. R.; Khosravi, A.; Menger F. M. J. Surfact. Deterg. 2011, 14, 381. https://doi.org/10.1007/s11743-011-1253-8
  7. Nazar, M. F.; Shah, S. S.; Khosa, M. A. J. Surfact. Deterg. 2010, 13, 529. https://doi.org/10.1007/s11743-009-1177-8
  8. Rao, K. J.; Paria, S. J. Phys. Chem. B 2009, 113, 474. https://doi.org/10.1021/jp8071298
  9. Mehta, S. K.; Chaudhary, S.; Kumar, R.; Bhasin, K. K. J. Phys. Chem. B 2009, 113, 7188. https://doi.org/10.1021/jp811310f
  10. Mahata, A.; Sarkar, D.; Bose, D.; Ghosh, D.; Girigoswami, A.; Das, P.; Chattopadhyay, N. J. Phys. Chem. B 2009, 113, 7517. https://doi.org/10.1021/jp900575e
  11. Nakamura, S.; Kobayashi, L.; Tanaka, R.; Yamashita, T. I.; Motomura, K.; Moroi, Y. Langmuir 2008, 24, 15. https://doi.org/10.1021/la702820h
  12. Ali. M.; Jha, M.; Das, S. K.; Saha, S. K. J. Phys. Chem. B 2009, 113, 15563. https://doi.org/10.1021/jp907677x
  13. Banipal, T. S.; Sood, A. K.; Singh, K. J. Surfact. Deterg. 2011, 14, 235. https://doi.org/10.1007/s11743-010-1217-4
  14. Lee, B. H.; Lee, N. M. J. Kor. Chem. Soc. 2010, 54, 374. https://doi.org/10.5012/jkcs.2010.54.4.374
  15. Lee, B. H. Appl. Chem. Eng. 2011, 22, 473.
  16. Behera, K.; Om, H.; Pandey, S. J. Phys. Chem. B 2009, 113, 786. https://doi.org/10.1021/jp8089787
  17. Sammalkorpi, M.; Karttunen, M.; Haatoja, M. J. Phys. Chem. B 2009, 113, 5863. https://doi.org/10.1021/jp901228v
  18. Lee, B. H.; Park, I. J. J. Kor. Chem. Soc. 2011, 55, 1.
  19. Rozner, S.; Kogan, A.; Mehta, S.; Somasundaran, P.; Aserin, A.; Garti, N.; Ottaviani, M. F. J. Phys. Chem. B 2009, 113, 700. https://doi.org/10.1021/jp807163t
  20. Penfold, J; Green, T. A.; Jones, G. C.; Ford, G.; Roberts, C.; Hubbard, J.; Petkov, J.; Thomas, R. K.; Grillo, I. Langmuir 2008, 24, 12209. https://doi.org/10.1021/la801662g
  21. Jusufi, A.; Hynninen, A. P.; Haataja, M.; Panagiotopoulos, A. Z. J. Phys. Chem. B 2009, 113, 6314. https://doi.org/10.1021/jp901032g
  22. Khan, M. N.; Azri, H. R. J. Phys. Chem. B 2010, 114, 8089. https://doi.org/10.1021/jp102109q

Cited by

  1. Relationship between the Micellization of TTAB and the Solubilization of p-Bromophenol in TTAB Solution vol.57, pp.6, 2013, https://doi.org/10.5012/jkcs.2013.57.6.665
  2. Thermodynamic Study on the Solubilization of p-Halogenated Phenol Derivatives in TTAB Solution vol.25, pp.1, 2014, https://doi.org/10.14478/ace.2013.1084
  3. Effects of NaCl and n-Butanol on the Solubilization of 4-Halogenated Phenols in Aqueous Solution of TTAB vol.58, pp.6, 2014, https://doi.org/10.5012/jkcs.2014.58.6.517
  4. Mixed Micellizations of TTAB with Other Surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) vol.56, pp.5, 2012, https://doi.org/10.5012/jkcs.2012.56.5.556

Acknowledgement

Supported by : 한국기술교육대학교