DOI QR코드

DOI QR Code

Synthesis and Antidiabetic Evaluation of Benzothiazole Derivatives

  • Mariappan, G. ;
  • Prabhat, P. ;
  • Sutharson, L. ;
  • Banerjee, J. ;
  • Patangia, U. ;
  • Nath, S.
  • Received : 2012.02.18
  • Accepted : 2012.03.27
  • Published : 2012.04.20

Abstract

A novel series of benzothiazole derivatives were synthesized and assayed in vivo to investigate their hypoglycemic activity by streptozotocin-induced diebetic model in rat. These derivatives showed considerable biological efficacy when compared to glibenclamide, a potent and well known antidiabetic agent as a reference drug. All the compounds were effective, amongst them 3d showed more prominent activity at 100 mg/kg p.o. The experimental results are statistically significant at p<0.01 and p<0.05 level.

Keywords

Benzothiazole;Hypoglycemic activity;Riluzole;Antitumor activity;Diabetes

References

  1. Geewananda, G. P.; Shigeo, K.; Sarath, P. G.; Oliver, J. M.; Frank, E. K. J. Am. Chem. Soc. 1988, 110(14), 4856. https://doi.org/10.1021/ja00222a071
  2. Geewananda, G. P.; Shigeo, K.; Neal, S.B. Tetrahedron Lett. 1989, 30, 4359. https://doi.org/10.1016/S0040-4039(00)99360-2
  3. Gunawardana, G. P.; Koehn, F. E.; Lee, A. Y.; Clardy, J.; He, H. Y.; Faulkenr, J. D. J. Org. Chem. 1992, 57(5), 523.
  4. Carroll, A. R.; Scheuer, P. J. J. Org. Chem. 1990, 55(14), 4426. https://doi.org/10.1021/jo00301a040
  5. Bryson, M.; Fulton, B.; Benfield, P. Drugs. 1996, 52, 549. https://doi.org/10.2165/00003495-199652040-00010
  6. Chopade, R. S.; Bahekar, R. H.; Khedekar, P. B.; Bhusari, K. P.; Rao, A.R.R. Arch. Pharm. Pharm. Med. Chem. 2002, 8, 381.
  7. Yogeeswari, P.; Srisam, D.; Suniljit, L.; Kumar, S.; Stables, J. Eur. J. Med. Chem. 2002, 37, 231. https://doi.org/10.1016/S0223-5234(02)01338-7
  8. Yogeeswari, P.; Sriram, D.; Mehta, S.; Nigam, D.; Kumar, M.; Murugesan, S. J. Stables II, Farmaco. 2005, 60, 1. https://doi.org/10.1016/j.farmac.2004.09.001
  9. Siddiqui, N.; Pandeya, S.; Khan, S.; Stables, J.; Rana, A.; Alam, M.; Arshad, M.; Bhat, M. Bioorg. Med. Chem. Lett. 2007, 17, 255. https://doi.org/10.1016/j.bmcl.2006.09.053
  10. Siddiqui, N.; Rana, A.; Khan, S.; Bhat, M.; Haque, S. Bioorg. Med. Chem. Lett. 2007, 17, 4178. https://doi.org/10.1016/j.bmcl.2007.05.048
  11. Hays, S. J.; Rice, M. J.; Ortwine, D. F.; Johnson, G.; Schwartz, R. D.; Boyd, D. K.; opeland, L. F.; Vartanian, M. G.; Boxer, P. A. J. Pharm. Sci. 1994, 83, 1425. https://doi.org/10.1002/jps.2600831013
  12. He, Y.; Benz, A.; Fu, T.; Wang, M.; Covey, D. F.; Zorumski, C. F.; Mennick, S. Neuropharmacology 2002, 42, 199. https://doi.org/10.1016/S0028-3908(01)00175-7
  13. Gurupadayya, B. M.; Gopal, M.; Padmashali, B.; Vaidya, V. P. Int. J. Heterocyclic Chem. 2005, 15, 169.
  14. Sawhney, S. N.; Arora, S. K.; Singh, J. V.; Bansal, O. P.; Singh, S. P. Indian J. Chem. 1978, 16B, 605.
  15. Foscolos, G.; Tsatsas, G.; Champagnac, A.; Pommier, M. Ann. Pharm. Fr. 1977, 35, 295.
  16. Siddiqui, N.; Alam, M.; Siddiqui, A. A. Asian. J. Chem. 2004, 16, 1005.
  17. Bensimon, G.; Lacomblez, L.; Meininger, V. New Engl. J. Med. 1994, 330, 585. https://doi.org/10.1056/NEJM199403033300901
  18. Bensimon, G.; Lacomblez, L.; Meininger, V. New Engl. J. Med. 1994, 330, 585. https://doi.org/10.1056/NEJM199403033300901
  19. Paget, C. J.; Kisner, K.; Stone, R. L.; Delong, D. C. J. Med. Chem. 1969, 12, 1016. https://doi.org/10.1021/jm00306a011
  20. Vicini, P.; Gernonikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C. A.; Colla, P. L. Bioorg. Med. Chem. 2003, 11, 4785. https://doi.org/10.1016/S0968-0896(03)00493-0
  21. Caleta, I.; Kralj, M.; Branimir Bertosa, B.; Sanja Tomic, S.; Pavlovic, G.; Pavelic, K.; Karminski-Zamola, G. J. Med. Chem. 2009, 52, 1744. https://doi.org/10.1021/jm801566q
  22. Chung, Y.; Shin, Y. K.; Zhan, C. G.; Lee, S.; Cho, H. Arch. Pharmacol. Res. 2004, 27, 893. https://doi.org/10.1007/BF02975839
  23. Yoshida, M.; Hayakawa, I.; Hayashi, N.; Agatsuma, T.; Oda, Y.; Tanzawa, F.; Iwasaki, S.; Koyama, K.; Furukawa, H.; Kurakata, S. Bioorg. Med. Chem. Lett. 2005, 15, 3328. https://doi.org/10.1016/j.bmcl.2005.05.077
  24. Bradshaw, T. D.; Stevens, M. F. G.; Westwell, A. D. Curr. Med. Chem. 2001, 8, 203. https://doi.org/10.2174/0929867013373714
  25. Chua, M. S.; Shi, D. F.; Wrigley, S.; Bradshaw, T. D.; Hutchinson, I.; Shaw, P. N.; Barrett, D. A.; Stanley, L. A.; Stevens, M. F. G. J. Med. Chem. 1999, 42, 381. https://doi.org/10.1021/jm981076x
  26. O'Brien, S. E.; Browne, H. L.; Bradshaw, T. D.; Westwell, A. D.; Stevens, M. F. G.; Laughton, C. A. Org. Biomol. Chem. 2003, 1, 493. https://doi.org/10.1039/b209067h
  27. Bradshaw, T. D.; Wrigley, S.; Shi, D. F.; Schulz, R. J.; Paull, K. D.; Stevens, M. F. G. Br. J. Cancer 1998, 77, 745. https://doi.org/10.1038/bjc.1998.122
  28. Kashiyama, E.; Hutchinson, I.; Chua, M. S.; Stinson, S. F.; Phillips, L. R.; Kaur, G.; Sausville, E. A.; Bradshaw, T. D.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 1999, 42, 4172. https://doi.org/10.1021/jm990104o
  29. Hutchinson, I.; Chua, M. S.; Browne, H. L.; Trapani, V.; Bradshaw, T. D.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 2001, 44, 1446. https://doi.org/10.1021/jm001104n
  30. Shi, D. F.; Bradshaw, T. D.; Wrigley, S.; McCall, C. J.; Lelieveld, P.; Stevens, M. F. G. J. Med. Chem. 1996, 39, 3375. https://doi.org/10.1021/jm9600959
  31. Lion, C. J.; Matthews, C. S.; Wells, G.; Bradshaw, T. D.; Stevens, M. F. G.; Westwell, A. D. Bioorg. Med. Chem. Lett. 2006, 16, 5005. https://doi.org/10.1016/j.bmcl.2006.07.072
  32. Mortimer, C. S.; Wells, G.; Crochard, P. J.; Stone, E. L.; Bradshaw, T. D.; Stevens, A. D.; Westwell, M. F. G. J. Med. Chem. 2006, 49, 179. https://doi.org/10.1021/jm050942k
  33. Wells, G.; Berry, J. M.; Bradshaw, T. D.; Burger, A. M.; Seaton, A.; Wang, B.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 2003, 46, 532. https://doi.org/10.1021/jm020984y
  34. Hutchinson, I.; Jennings, S. A.; Vishnuvajjala, B. R.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 2002, 45, 744. https://doi.org/10.1021/jm011025r
  35. Khadse, B. G.; Sengupta, S. R. Indian J. Chem. 1993, Sec-B, 407.
  36. Palmer, F. J.; Trigg, R. B.; Warrington, J. V. J. Med. Chem. 1971, 14, 248. https://doi.org/10.1021/jm00285a022
  37. Gurupadaiah, B. M.; Jayachandran, E.; ShivaKumar, B.; Nagappa, A. N.; Nargund, L. V. G. Indian J. Heterocycl. Chem. 1998, 7, 213.
  38. Gopkumar, P.; Shivakumar, B.; Jayachandran, E.; Nagappa, A. N.; Nargund, L. V. G.; Gurupadaiah, B. M. Indian J. Heterocycl. Chem. 2001, 11, 39.
  39. Burger, A.; Sawhey, S. N. J. Med. Chem. 1968, 11, 270. https://doi.org/10.1021/jm00308a018
  40. Jayachandran, E.; Bhatia, K.; Naragud, L. V. G.; Roy, A. Indian Drugs 2003, 40, 408.
  41. Weekes, A. A.; Westwell, A. D. Curr. Med. Chem. 2009, 16, 2430. https://doi.org/10.2174/092986709788682137
  42. Henriksen, G.; Hauser, A. I.; Westwell, A. D.; Yousefi, B. H.; Schwaiger, M.; Drzega, A.; Wester, H. J. J. Med. Chem. 2007, 50, 1087. https://doi.org/10.1021/jm061466g
  43. Mathis, C. A.; Wang, Y.; Holt, D. P.; Haung, G. F.; Debnath, M. L.; Klunk, W. E. J. Med. Chem. 2003, 46, 2740. https://doi.org/10.1021/jm030026b
  44. Wang, X.; Sarris, K.; Zhang, K. Kage, D.; Brown, S. P.; Kolasa, T.; Surowy, C.; ElKouhen, O. F.; Muchmore, S. W.; Brioni, J. D.; Stewart, A. O. J. Med. Chem. 2009, 52, 170. https://doi.org/10.1021/jm801042a
  45. Suter, H.; Zutter, H. Helv. Chim. Acta 1967, 50, 1084. https://doi.org/10.1002/hlca.19670500415
  46. Diaz, H. M.; Molina, R. V.; Andrade, R. O.; Coutino, D. D.; Franco, L. M.; Webster, S. P.; Binnie, M.; Soto, S. E.; Barajas, M. I.; Rivera, I. L.; Vazquez, G. N. Bioorg. Med. Chem. Lett. 2008, 18, 2871. https://doi.org/10.1016/j.bmcl.2008.03.086
  47. Nitta, A.; Fujii, H.; Sakami, S.; Nishimura, Y.; Ohyama, T.; Satoh, M.; Nakaki, J.; Satoh, S.; Inada, C.; Kozono, H.; Kumagai, H.; Shimamura, M.; Fukazawa, T.; Kawai, H. Bioorg. Med. Chem. Lett. 2008, 15, 5435.
  48. Vazquez, G. N.; Paoli, P.; Rivera, I. L.; Molina, R. V.; Franco, J. L. M.; Andrade, R. O.; Soto, S. E.; Camici, G.; Coutino, D. D.; Ortiz, I. G.; Mayorga, K. M.; Díaz, H. M. Bioorg. Med. Chem. Lett. 2009, 17, 3332. https://doi.org/10.1016/j.bmc.2009.03.042
  49. Su, X.; Vicker, N.; Ganeshapillai, D.; Smith, A.; Purohit, A.; Reed, M. J.; Potter, B. V. Mol. Cell Endocrinol. 2006, 248, 214. https://doi.org/10.1016/j.mce.2005.10.022
  50. Barf, T.; Vallgarda, J.; Emond, R.; Haggstrom, C.; Kurz, G.; Nygren, A.; Larwood, V.; Mosialou, E.; Axelsson, K.; Olsson, R.; Engblom, L.; Edling, N.; Ronquist-Nii, Y.; Ohman, B.; Alberts, P.; Abrahmsen, L. J. Med. Chem. 2002, 45, 3813. https://doi.org/10.1021/jm025530f
  51. Fujieda, H.; Usui, S.; Suzuki, T.; Nakagawa, H.; Ogura, M.; Makishima, M.; Miyata, N. Bioorg. Med. Chem. Lett. 2007, 17, 4351. https://doi.org/10.1016/j.bmcl.2007.05.017
  52. Jeon, R.; Kim, Y. J.; Cheon, Y.; Ryu, J. H. Arch. Pharmacal Res. 2006, 29, 394. https://doi.org/10.1007/BF02968589
  53. Pattan, S. R.; Suresh, C.; Pujar, V. D.; Reddy, V. V. K.; Rasal, V. P.; Koti, B. C. Indian. J. Chem. 2005, 44B, 2404.

Cited by

  1. Antidiabetic potential and enzyme kinetics of benzothiazole derivatives and their non-bonded interactions with α-glucosidase and α-amylase vol.25, pp.4, 2016, https://doi.org/10.1007/s00044-016-1520-3
  2. Synthesis, crystal structure and antidiabetic activity of substituted (E)-3-(Benzo [d]thiazol-2-ylamino) phenylprop-2-en-1-one vol.59, 2013, https://doi.org/10.1016/j.ejmech.2012.11.020
  3. Visible-light-promoted synthesis of benzothiazoles from 2-aminothiophenols and aldehydes vol.58, pp.9, 2017, https://doi.org/10.1016/j.tetlet.2017.01.053
  4. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry vol.89, 2015, https://doi.org/10.1016/j.ejmech.2014.10.059
  5. Green and Highly Efficient Synthesis of Mono- and Bis-Benzothiazoles in the Presence of Fe(SD)3under Ultrasound Irradiation vol.64, pp.1, 2017, https://doi.org/10.1002/jccs.201600200
  6. Enhanced cytotoxicity by a benzothiazole-containing cisplatin derivative in breast cancer cells vol.41, pp.2, 2017, https://doi.org/10.1039/C6NJ02753A
  7. Synthesis and blood glucose and lipid-lowering effects of benzothiazole-substituted benzenesulfonylurea derivatives vol.146, pp.12, 2015, https://doi.org/10.1007/s00706-015-1471-2
  8. Novel cycloalkylthiophene–imine derivatives bearing benzothiazole scaffold: Synthesis, characterization and antiviral activity evaluation vol.23, pp.18, 2013, https://doi.org/10.1016/j.bmcl.2013.07.023
  9. Synthesis and Biological Activity of New 1,3-Benzothiazole Derivatives vol.48, pp.8, 2014, https://doi.org/10.1007/s11094-014-1139-y
  10. Efficiently functionalized oxacalix[4]arenes: Synthesis, characterization and exploration of their biological profile as novel HDAC inhibitors vol.26, pp.3, 2016, https://doi.org/10.1016/j.bmcl.2015.12.044
  11. Ruthenium Catalyzed Intramolecular C–S Coupling Reactions: Synthetic Scope and Mechanistic Insight vol.18, pp.3, 2016, https://doi.org/10.1021/acs.orglett.5b03185
  12. Recent Advances in the Chemistry and Biology of Benzothiazoles vol.348, pp.3, 2015, https://doi.org/10.1002/ardp.201400340
  13. Synthesis and antimicrobial activity of pyrimidinyl bis(benzazoles) vol.26, pp.2, 2017, https://doi.org/10.1007/s00044-016-1758-9
  14. Novel benzothiazole based sulfonylureas/sulfonylthioureas: design, synthesis and evaluation of their antidiabetic potential vol.40, pp.8, 2016, https://doi.org/10.1039/C5NJ03589A
  15. Contemporary progress in the synthesis and reactions of 2-aminobenzothiazole: a review vol.42, pp.2, 2018, https://doi.org/10.1039/C7NJ03776G
  16. Design, Synthesis and Anticancer Screening of Novel Benzothiazole-Piperazine-1,2,3-Triazole Hybrids vol.23, pp.11, 2018, https://doi.org/10.3390/molecules23112788