DOI QR코드

DOI QR Code

Partial Characterization of α-Galactosidic Activity from the Antarctic Bacterial Isolate, Paenibacillus sp. LX-20 as a Potential Feed Enzyme Source

  • Park, In-Kyung (Department of Animal Sciences and Environment, College of Animal Bioscience and Technology, Konkuk University) ;
  • Lee, Jae-Koo (Department of Animal Sciences and Environment, College of Animal Bioscience and Technology, Konkuk University) ;
  • Cho, Jaie-Soon (Department of Animal Sciences and Environment, College of Animal Bioscience and Technology, Konkuk University)
  • Received : 2011.12.23
  • Accepted : 2012.03.05
  • Published : 2012.06.01

Abstract

An Antarctic bacterial isolate displaying extracellular ${\alpha}$-galactosidic activity was named Paenibacillus sp. LX-20 based on 16S rRNA gene sequence analysis. Optimal activity for the LX-20 ${\alpha}$-galactosidase occurred at pH 6.0-6.5 and $45^{\circ}C$. The enzyme immobilized on the smart polymer Eudragit L-100 retained 70% of its original activity after incubation for 30 min at $50^{\circ}C$, while the free enzyme retained 58% of activity. The enzyme had relatively high specificity for ${\alpha}$-D-galactosides such as p-nitrophenyl-${\alpha}$-galactopyranoside, melibiose, raffinose and stachyose, and was resistant to some proteases such as trypsin, pancreatin and pronase. Enzyme activity was almost completely inhibited by $Ag^+$, $Hg^{2+}$, $Cu^{2+}$, and sodium dodecyl sulfate, but activity was not affected by ${\beta}$-mercaptoethanol or EDTA. LX-20 ${\alpha}$-galactosidase may be potentially useful as an additive for soybean processing in the feed industry.

Keywords

Antarctic;Paenibacillus sp. ${\alpha}$-Galactosidase;Feed Industry

Acknowledgement

Supported by : Konkuk University

References

  1. Ai, Z., Z. Jiang, L. Li, W. Deng, I. Kusakabe and H. Li. 2005. Immobilization of Streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide production. Process Biochem. 40:2707-2714. https://doi.org/10.1016/j.procbio.2004.12.006
  2. Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Anderson, R. L. and W. J. Wolf. 1995. Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J. Nutr. 125:581S-588S.
  4. Ao, T., A. H. Cantor, A. J. Pescatore, M. J. Ford, J. L. Pierce and K. A. Dawson. 2009. Effect of enzyme supplementation and acidification of diets on nutrient digestibility and growth performance of broiler chicks. Poult. Sci. 88:111-117. https://doi.org/10.3382/ps.2008-00191
  5. Cao, Y., T. Yuan, P. Shi, H. Luo, N. Li, K. Meng, Y. Bai, P. Yang, Z. Zhou, Z. Zhang and B. Yao. 2010. Properties of a novel $\alpha$-galactosidase from Streptomyces sp. S27 and its potential for soybean processing. Enzyme Microb. Technol. 47:305-312. https://doi.org/10.1016/j.enzmictec.2010.09.007
  6. Falkoski, D. L., V. M. Guimaraes, C. M. Callegari, A. P. Reis, E. G. De Barros and S. T. De Rezende. 2006. Processing of soybean products by semipurified plant and microbial $\alpha$-galactosidases. J. Agric. Food Chem. 54:10184-10190. https://doi.org/10.1021/jf0617162
  7. Fridjonsson, O., H. Watzlawick, A. Gehweiler, T. Rohrhirsch and R. Mattes. 1999. Cloning of the gene encoding a novel thermostable $\alpha$-galactosidase from Thermus brockianus ITI360. Appl. Environ. Microbiol. 65:3955-3963.
  8. Garsoux, G., J. Lamotte, C. Gerday and G. Feller. 2004. Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Biochem. J. 384:247-253. https://doi.org/10.1042/BJ20040325
  9. Gerday, C., M. Aittaleb, J. L. Arpigny, E. Baise, J. P. Chessa, G. Garsoux, I. Petrescu and G. Feller. 1997. Psychrophilic enzymes: a thermodynamic challenge. Biochim. Biophys. Acta 1342:119-131. https://doi.org/10.1016/S0167-4838(97)00093-9
  10. Ghazi, S., J. A. Rooke and H. Galbraith. 2003. Improvement of the nutritive value of soybean meal by protease and $\alpha$-galactosidase treatment in broiler cockerels and broiler chicks. Br. Poult. Sci. 44:410-418. https://doi.org/10.1080/00071660310001598283
  11. Ghorbani, G. R., R. Kowsar, M. Alikhani and A. Nikkhah. 2007. Soymilk as a novel milk replacer to stimulate early calf starter intake and reduce weaning age and costs. J. Dairy Sci. 90:5692-5697. https://doi.org/10.3168/jds.2007-0431
  12. Goulas, T., A. Goulas, G. Tzortzis and G. R. Gibson. 2009. A novel $\alpha$-galactosidase from Bifidobacterium bifidum with transgalactosylating properties: gene molecular cloning and heterologous expression. Appl. Microbiol. Biotechnol. 82:471-477. https://doi.org/10.1007/s00253-008-1750-5
  13. Grieshop, C. M., C. T. Kadzere, G. M. Clapper, E. A. Flickinger, L. L. Bauer, R. L. Frazier and G. C. Fahey Jr. 2003. Chemical and nutritional characteristics of United States soybeans and soybean meals. J. Agric. Food Chem. 51:7684-7691. https://doi.org/10.1021/jf034690c
  14. Hasan, F., A. A. Shah and A. Hameed. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39:235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
  15. Hutadilok-Towatana, N., A. Painupong and P. Suntinanalert. 1999. Purification and characterization of an extracellular protease from alkaliphilic and thermophilic Bacillus sp. PS 719. J. Biosci. Bioeng. 87:581-587. https://doi.org/10.1016/S1389-1723(99)80118-2
  16. Ishiguro, M., S. Kaneko, A. Kuno, Y. Koyama, S. Yoshida, G. G. Park, Y. Sakakibara, I. Kusakabe and H. Kobayashi. 2001. Purification and characterization of the recombinant Thermus sp. T2 $\alpha$-galactosidase expressed in Escherichia coli. Appl. Environ. Microbiol. 67:1601-1606. https://doi.org/10.1128/AEM.67.4.1601-1616.2001
  17. Iyo, A. H. and C. W. Forsberg. 1999. A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 65:995-998.
  18. Kim, B. C., K. H. Lee, M. N. Kim, E. M. Kim, S. R. Min, H. S. Kim and K. S. Shin. 2009. Paenibacillus pini sp. nov., a cellulolytic bacterium isolated from the rhizosphere of pine tree. J. Microbiol. 47:699-704. https://doi.org/10.1007/s12275-009-0343-z
  19. King, M. R., B. A. White, H. P. Blaschek, B. M. Chassy, R. I. Mackie and I. K. O. Cann. 2002. Purification and characterization of a thermostable $\alpha$-galactosidase from Thermoanaerobacterium polysaccharolyticum. J. Agric. Food Chem. 50:5676-5682. https://doi.org/10.1021/jf0202281
  20. Kohlmeier, R. H. 1990. World production, storage and utilization of various defatted animal and vegetable mid-high protein meals. In: World Conference of Edible Fats Oils Processing Basic Principles and Modern practices (Ed. D. R. Erikson). Am. Oil Chem. Soc. Champaign, IL, USA. p. 390.
  21. Leder, S., W. Hartmeier and S. P. Marx. 1999. $\alpha$-galactosidase of Bifidobacterium adolescentis DSM 20083. Curr. Microbiol. 38:101-106. https://doi.org/10.1007/s002849900411
  22. Lei, X. G. and J. M. Porres. 2003. Phytase enzymology, applications and biotechnology. Biotechnol. Lett. 25:1787-1794. https://doi.org/10.1023/A:1026224101580
  23. Miller, G. L. 1959. Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428. https://doi.org/10.1021/ac60147a030
  24. Patil, A. G. G., S. K. Praveen Kumar, V. H. Mulimani, Y. Veeranagouda and K. Lee. 2010. $\alpha$-galactosidase from Bacillus megaterium VHM1 and its application in removal of flatulence-causing factors from soymilk. J. Microbiol. Biotechnol. 20:1546-1554. https://doi.org/10.4014/jmb.0912.12012
  25. Roy, I., A. Gupta, S. K. Khare, V. S. Bisaria and M. N. Gupta. 2003. Immobilization of xylan-degrading enzymes from Melanocarpus albomyces IIS 68 on the smart polymer Eudragit L-100. Appl. Microbiol. Biotechnol. 61:309-313. https://doi.org/10.1007/s00253-002-1213-3
  26. Shipkowski, S. and J. E. Brenchley. 2005. Characterization of an unusual cold-active beta-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Appl. Environ. Microbiol. 71:4225-4232. https://doi.org/10.1128/AEM.71.8.4225-4232.2005
  27. Smiricky-Tjardes, M. R., C. M. Grieshop, E. A. Flickinger, L. L. Bauer and G. C. Fahey Jr. 2003. Dietary galactooligosaccharides affect ileal and total tract nutrient digestibility, ileal and fecal bacterial concentrations, and ileal fermentative characteristics of growing pigs. J. Anim. Sci. 81:2535-2545.
  28. Smits, C. H. M. and G. Annison. 1996. Non-starch plant polysaccharides in broiler nutrition-towards a physiologically valid approach to their determination. World's Poult. Sci. J. 52:204-221.
  29. Stein, H. H., L. L. Berger, J. K. Drackley, G. C. Fahey Jr, D. C. Hernot and C. M. Parsons. 2008. Nutrition properties and feeding values of soybeans and their coproducts. In: Soybeans, Chemistry, Production, Processing, and Utilization (Ed. A. Johnson, P. J. White and R. Galloway). AOCS press, Urbana, IL. USA. pp. 613-660.
  30. Syed, D. G., D. Agasar and A. Pandey. 2009. Production and partial purification of $\alpha$-amylase from a novel isolate Streptomyces gulbargensis. J. Ind. Microbiol. Biotechnol. 36:189-194. https://doi.org/10.1007/s10295-008-0484-9
  31. Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular evolution genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  32. Tamura, K., M. Nei and S. Kumar. 2004. Prospect for inferring very large phylogenies by using the neighbor-joining methods. Proc. Natl. Acad. Sci. USA. 101:11030-11035. https://doi.org/10.1073/pnas.0404206101
  33. Thompson, J. D., D. G. Higgins and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  34. Viana, P. A., S. T. De Rezende, V. M. Marques, L. M. Trevizano, F. M. L. Passos, M. G. A. Oliveira, M. P. Bemquerer, J. S. Oliveira and V. M. Guimaraes. 2006. Extracellular $\alpha$-galactosidase from Debaryomyces hansenii UFV-1 and its use in the hydrolysis of raffinose oligosaccharides. J. Agric. Food Chem. 54:2385-2391. https://doi.org/10.1021/jf0526442
  35. Waeonukul, R., P. Pason, K. L. Kyu, K. Sakka, A. Kosugi, Y. Mori and K. Ratanakhanokchai. 2009. Cloning, sequencing, and expression of the gene encoding a multidomain endo-beta-1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 19:277-285.
  36. Wang, H., H. Luo, J. Li, Y. Bai, H. Huang, P. Shi, Y. Fan and B. Yao. 2010. An $\alpha$-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with $\beta$-mannase. Bioresour. Technol. 101:8376-8382. https://doi.org/10.1016/j.biortech.2010.06.045
  37. Wang, Q. F., J. L. Miao, Y. H. Hou, Y. Ding, G. D. Wang and G. Y. Li. 2005. Purification and characterization of an extracellular cold-active serine protease from the psychrophilic bacterim Colwellia sp. NJ341. Biotechnol. Lett. 27:1195-1198. https://doi.org/10.1007/s10529-005-0016-x
  38. Wang, Y., X. Gao, Q. Su, W. Wu and L. An. 2007. Cloning, expression, and enzyme characterization of an acid heat-stable phytase from Aspergillus fumigatus WY-2. Curr. Microbiol. 55:65-70. https://doi.org/10.1007/s00284-006-0613-5
  39. William, G. W., M. B. Susan, A. P. Dale and J. L. David. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703.
  40. Yoon, M. Y. and H. J. Hwang. 2008. Reduction of soybean oligosaccharides and properties of $\alpha$-D-galactosidase from Lactobacillus curvatus R08 and Leuconostoc mesenteriodes JK55. Food Microbiol. 25:815-823. https://doi.org/10.1016/j.fm.2008.04.008