DOI QR코드

DOI QR Code

ABSORBING PAIRS FACILITATING COMMON FIXED POINT THEOREMS FOR LIPSCHITZIAN TYPE MAPPINGS IN SYMMETRIC SPACES

Gopal, Dhananjay;Hasan, Mohammad;Imdad, Mohammad

  • Received : 2010.12.01
  • Published : 2012.04.30

Abstract

The purpose of this paper is to improve certain results proved in a recent paper of Soliman et al. [20]. These results are the outcome of utilizing the idea of absorbing pairs due to Gopal et al. [6] as opposed to two conditions namely: weak compatibility and the peculiar condition initiated by Pant [15] to ascertain the common fixed points of Lipschitzian mappings. Some illustrative examples are also furnished to highlight the realized improvements.

Keywords

tangential mappings;Lipschitzian mappings;absorbing pairs

References

  1. M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002), no. 1, 181-188. https://doi.org/10.1016/S0022-247X(02)00059-8
  2. A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmet- ric spaces satisfying a contractive condition of integral type, J. Math. Anal. Appl. 322 (2006), no. 2, 796-802. https://doi.org/10.1016/j.jmaa.2005.09.068
  3. D. K. Burke, Cauchy sequences in semimetric spaces, Proc. Amer. Math. Soc. 33 (1972), 161-164. https://doi.org/10.1090/S0002-9939-1972-0290328-3
  4. S. H. Cho, G. Y. Lee, and J. S. Bae, On coincidence and fixed point theorems in symmetric spaces, Fixed Point Theory Appl. 2008 (2008), Art. ID 562130, 9 pp.
  5. F. Galvin and S. D. Shore, Completeness in semimetric spaces, Pacific. J. Math. 113 (1984), no. 1, 67-75. https://doi.org/10.2140/pjm.1984.113.67
  6. D. Gopal, R. P. Pant, and A. S. Ranadive, Common fixed point of absorbing maps, Bull. Marathwada Math. Soc. 9 (2008), no. 1, 43-48.
  7. T. L. Hicks and B. E. Rhoades, Fixed point theory in symmetric spaces with applications to probabilistic spaces, Nonlinear Anal. 36 (1999), no. 3, Ser. A: Theory Methods, 331- 344. https://doi.org/10.1016/S0362-546X(98)00002-9
  8. M. Imdad, J. Ali, and L. Khan, Coincidence and fixed points in symmetric spaces under strict contractions, J. Math. Anal. Appl. 320 (2006), no. 1, 352-360. https://doi.org/10.1016/j.jmaa.2005.07.004
  9. M. Imdad and A. H. Soliman, Some Common fixed point theorems for a pair of tangen- tial mappings in symmetric spaces, Appl. Math. Lett. 23 (2010), no. 4, 351-355. https://doi.org/10.1016/j.aml.2009.10.009
  10. G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), no. 4, 771-779. https://doi.org/10.1155/S0161171286000935
  11. G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci. 4 (1996), no. 2, 199-215.
  12. G. Jungck and B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory 7 (2006), no. 2, 287-296.
  13. Y. Liu, Jun Wu and Z. Li, Common fixed points of singlevalued and multivalued maps, Int. J. Math. Math. Sci. 2005 (2005), no. 19, 3045-3055. https://doi.org/10.1155/IJMMS.2005.3045
  14. R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994), no. 2, 436-440. https://doi.org/10.1006/jmaa.1994.1437
  15. R. P. Pant, Common fixed points of Lipschitz type mapping pairs, J. Math. Anal. Appl. 248 (1999), no. 1, 280-283.
  16. R. P. Pant and V. Pant, Common fixed points under strict contractive conditions, J. Math. Anal. Appl. 248 (2000), no. 1, 327-332. https://doi.org/10.1006/jmaa.2000.6871
  17. V. Pant, Common fixed points under Lipschitz type conditions, Bull. Korean Math. Soc. 45 (2008), no. 3, 467-475.
  18. K. P. R. Sastry and I. S. R. Krishna Murthy, Common fixed points of two partially commuting tangential selfmaps on a metric space, J. Math. Anal. Appl. 250 (2000), no. 2, 731-734. https://doi.org/10.1006/jmaa.2000.7082
  19. S. L. Singh and A. Kumar, Fixed point theorems for Lipschitz type maps, Riv. Math. Univ. Parma, (7) 3 (2004), 25-34.
  20. A. H. Soliman, M. Imdad, and M. Hasan, Proving unified common fixed point theorems via common property (E-A) in symmetric spaces, Commun. Korean Math. Soc. 25 (2010), no. 4, 629-645. https://doi.org/10.4134/CKMS.2010.25.4.629
  21. W. A. Wilson, On semi-metric spaces, Amer. J. Math. 53 (1931), no. 2, 361-373. https://doi.org/10.2307/2370790

Cited by

  1. Fixed point theorems for non-self mappings in symmetric spaces under φ-weak contractive conditions and an application to functional equations in dynamic programming vol.227, 2014, https://doi.org/10.1016/j.amc.2013.11.014
  2. Some Integral Type Fixed Point Theorems for Non-Self-Mappings Satisfying Generalized(ψ,φ)-Weak Contractive Conditions in Symmetric Spaces vol.2014, 2014, https://doi.org/10.1155/2014/519038
  3. Some Nonunique Common Fixed Point Theorems in Symmetric Spaces through Property vol.2013, 2013, https://doi.org/10.1155/2013/753965