DOI QR코드

DOI QR Code

SOCIAL EQUILIBRIUM IN A GENERALIZED NASH GAME WITH THE AFFINE CONDITION

Kim, Won-Kyu

  • Received : 2010.12.12
  • Published : 2012.04.30

Abstract

In this paper, we will prove a social equilibrium existence theorem of a generalized Nash game with affine constraint correspondences which is comparable with Nash's equilibrium existence theorem in several aspects.

Keywords

generalized Nash game;social equilibrium;affine

References

  1. J. G. Becker and D. S. Damianov, On the existence of symmetric mixed strategy equilibria, Econom. Letters 90 (2006), no. 1, 84-87. https://doi.org/10.1016/j.econlet.2005.07.005
  2. G. Debreu, A social equilibrium existence theorem, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 386-393.
  3. W. K. Kim and S. Kum, Existence of Nash equilibrium in a compact acyclic strategic game, J. Chungcheong Math. Soc. 23 (2010), 29-35.
  4. W. K. Kim and K. H. Lee, Nash equilibrium and minimax theorem with C-concavity, J. Math. Anal. Appl. 328 (2007), no. 2, 1206-1216. https://doi.org/10.1016/j.jmaa.2006.06.038
  5. H. Lu, On the existence of pure strategy Nash equilibrium, Econom. Letters 94 (2007), no. 3, 459-462. https://doi.org/10.1016/j.econlet.2006.09.006
  6. J. Nash, Non-cooperative games, Ann. Math. 54 (1951), 286 - 295. https://doi.org/10.2307/1969529
  7. H. Nikaido and K. Isoda, Note on non-cooperative convex games, Pacific J. Math. 5 (1955), 807 - 815. https://doi.org/10.2140/pjm.1955.5.807

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)