DOI QR코드

DOI QR Code

ON p, q-DIFFERENCE OPERATOR

  • Corcino, Roberto B. (Department of Mathematics Mindanao State University) ;
  • Montero, Charles B. (Department of Mathematics Mindanao State University)
  • Received : 2010.06.28
  • Published : 2012.05.01

Abstract

In this paper, we define a $p$, $q$-difference operator and obtain an explicit formula which is used to express the $p$, $q$-analogue of the unified generalization of Stirling numbers and its exponential generating function in terms of the $p$, $q$-difference operator. Explicit formulas for the non-central $q$-Stirling numbers of the second kind and non-central $q$-Lah numbers are derived using the new $q$-analogue of Newton's interpolation formula. Moreover, a $p$, $q$-analogue of Newton's interpolation formula is established.

References

  1. L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000. https://doi.org/10.1215/S0012-7094-48-01588-9
  2. K. Conrad, A q-analogue of Mahler expansions I, Adv. Math. 153 (2000), no. 2, 185- 230. https://doi.org/10.1006/aima.1999.1890
  3. R. B. Corcino, On p, q-binomial coefficients, Integers 8 (2008), A29, 16 pp.
  4. R. B. Corcino, L. C. Hsu, and E. L. Tan, A q-analogue of generalized Stirling numbers, Fibonacci Quart. 44 (2006), no. 2, 154-165.
  5. R. B. Corcino and C. Montero, A p, q-analogue of the generalized Stirling numbers, JP J. Algebra Number Theory Appl. 15 (2009), no. 2, 137-155.
  6. A. De Medicis and P. Leroux, Generalized Stirling numbers, convolution formulae and p, q-analogues, Canad. J. Math. 47 (1995), no. 3, 474-499. https://doi.org/10.4153/CJM-1995-027-x
  7. L. C. Hsu and P. J.-S. Shiue, A unified approach to generalized Stirling numbers, Adv. in Appl. Math. 20 (1998), no. 3, 366-384. https://doi.org/10.1006/aama.1998.0586
  8. M. S. Kim and J. W. Son, A note on q-difference operators, Commun. Korean Math. Soc. 17 (2002), no. 3, 423-430. https://doi.org/10.4134/CKMS.2002.17.3.423
  9. P. Leroux, Reduced matrices and q-log-concavity properties of q-Stirling numbers, J. Combin. Theory Ser. A 54 (1990), no. 1, 64-84. https://doi.org/10.1016/0097-3165(90)90006-I
  10. D. S. Moak, The q-analogue of the Lagurre polynomials, J. Math. Anal. Appl. 81 (1981), no. 1, 20-47. https://doi.org/10.1016/0022-247X(81)90048-2
  11. J. B. Remmel and M. L. Wachs, Rook theory, generalized Stirling numbers and (p, q)- analogues, Electron. J. Combin. 11 (2004), no. 1, Research Paper 84, 48 pp.
  12. S.-Z. Song, G.-S. Cheon, Y.-B. Jun, and L. B. Beasley, A q-analogue of the generalized factorial numbers, J. Korean Math. Soc. 47 (2010), no. 3, 645-657.
  13. M. Wachs and D. White, p, q-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A 56 (1991), no. 1, 27-46. https://doi.org/10.1016/0097-3165(91)90020-H