Anticoagulant activities of curcumin and its derivative

  • Kim, Dong-Chan (Laboratory of Microvascular Circulation Research, NEUORNEX Inc.) ;
  • Ku, Sae-Kwang (Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University) ;
  • Bae, Jong-Sup (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
  • Received : 2011.08.09
  • Accepted : 2011.10.11
  • Published : 2012.04.30


Curcumin, a polyphenol responsible for the yellow color of the curry spice turmeric, possesses antiinflammatory, antiproliferative and antiangiogenic activities. However, anticoagulant activities of curcumin have not been studied. Here, the anticoagulant properties of curcumin and its derivative (bisdemethoxycurcumin, BDMC) were determined by monitoring activated partial thromboplastin time (aPTT), prothrombin time (PT) as well as cell-based thrombin and activated factor X (FXa) generation activities. Data showed that curcumin and BDMC prolonged aPTT and PT significantly and inhibited thrombin and FXa activities. They inhibited the generation of thrombin or FXa. In accordance with these anticoagulant activities, curcumin and BDMC showed anticoagulant effect in vivo. Surprisingly, these anticoagulant effects of curcumin were better than those of BDMC indicating that methoxy group in curcumin positively regulated anticoagulant function of curcumin. Therefore, these results suggest that curcumin and BDMC possess antithrombotic activities and daily consumption of the curry spice turmeric might help maintain anticoagulant status.



Supported by : NRF


  1. Davie, E. W. (1995) Biochemical and molecular aspects of the coagulation cascade. Thromb. Haemost. 74, 1-6.
  2. Davie, E. W., Fujikawa, K. and Kisiel, W. (1991) The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30, 10363-10370.
  3. Hoffman, M. M. and Monroe, D. M. (2005) Rethinking the coagulation cascade. Curr. Hematol. Rep. 4, 391-396.
  4. Hoffmann, J. N., Vollmar, B., Romisch, J., Inthorn, D., Schildberg, F. W. and Menger, M. D. (2002) Antithrombin effects on endotoxin-induced microcirculatory disorders are mediated mainly by its interaction with microvascular endothelium. Crit. Care. Med. 30, 218-225.
  5. Monroe, D. M., Hoffman, M. and Roberts, H. R. (2002) Platelets and thrombin generation. Arterioscler. Thromb. Vasc. Biol. 22, 1381-1389.
  6. Quinn, C., Hill, J. and Hassouna, H. (2000) A guide for diagnosis of patients with arterial and venous thrombosis. Clin. Lab. Sci. 13, 229-238.
  7. Della Valle, P., Crippa, L., Garlando, A. M., Pattarini, E., Safa, O., Vigano D'Angelo, S. and D'Angelo, A. (1999) Interference of lupus anticoagulants in prothrombin time assays: implications for selection of adequate methods to optimize the management of thrombosis in the antiphospholipid-antibody syndrome. Haematologica 84, 1065-1074.
  8. Furie, B. and Furie, B. C. (2005) Thrombus formation in vivo. J. Clin. Invest. 115, 3355-3362.
  9. Jurenka, J. S. (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev. 14, 141-153.
  10. Bengmark, S., Mesa, M. D. and Gil, A. (2009) Plant-derived health: the effects of turmeric and curcuminoids. Nutr. Hosp. 24, 273-281.
  11. Joshi, J., Ghaisas, S., Vaidya, A., Vaidya, R., Kamat, D. V., Bhagwat, A. N. and Bhide, S. (2003) Early human safety study of turmeric oil (Curcuma longa oil) administered orally in healthy volunteers. J. Assoc. Physicians. India. 51, 1055-1060.
  12. Ammon, H. P. and Wahl, M. A. (1991) Pharmacology of Curcuma longa. Planta. Med. 57, 1-7.
  13. Bao, W., Li, K., Rong, S., Yao, P., Hao, L., Ying, C., Zhang, X., Nussler, A. and Liu, L. (2010) Curcumin alleviates ethanol-induced hepatocytes oxidative damage involving heme oxygenase-1 induction. J. Ethnopharmacol. 128, 549-553.
  14. Shankar, R., de la Motte, C. A., Poptic, E. J. and DiCorleto, P. E. (1994) Thrombin receptor-activating peptides differentially stimulate platelet-derived growth factor production, monocytic cell adhesion, and E-selectin expression in human umbilical vein endothelial cells. J. Biol. Chem. 269, 13936-13941.
  15. Bachmeier, B., Nerlich, A. G., Iancu, C. M., Cilli, M., Schleicher, E., Vene, R., Dell'Eva, R., Jochum, M., Albini, A. and Pfeffer, U. (2007) The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice. Cell. Physiol. Biochem. 19, 137-152.
  16. Aggarwal, B. B., Sundaram, C., Malani, N. and Ichikawa, H. (2007) Curcumin: the Indian solid gold. Adv. Exp. Med. Biol. 595, 1-75.
  17. Inoue, K., Nomura, C., Ito, S., Nagatsu, A., Hino, T. and Oka, H. (2008) Purification of curcumin, demethoxycurcumin, and bisdemethoxycurcumin by high-speed countercurrent chromatography. J. Agric. Food. Chem. 56, 9328-9336.
  18. Greenwald, P., Milner, J. A., Anderson, D. E. and McDonald, S. S. (2002) Micronutrients in cancer chemoprevention. Cancer. Metastasis. Rev. 21, 217-230.
  19. Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A. and Cole, G. M. (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21, 8370-8377.
  20. Zeitlin, P. (2004) Can curcumin cure cystic fibrosis? N. Engl. J. Med. 351, 606-608.
  21. Ahsan, H., Parveen, N., Khan, N. U. and Hadi, S. M. (1999) Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem. Biol. Interact. 121, 161-175.
  22. Sreejayan, N. and Rao, M. N. (1996) Free radical scavenging activity of curcuminoids. Arzneimittelforschung 46, 169-171.
  23. Thapliyal, R., Deshpande, S. S. and Maru, G. B. (2001) Effects of turmeric on the activities of benzo(a)pyrene-induced cytochrome P-450 isozymes. J. Environ. Pathol. Toxicol. Oncol. 20, 59-63.
  24. Syu, W. J., Shen, C. C., Don, M. J., Ou, J. C., Lee, G. H. and Sun, C. M. (1998) Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria. J. Nat. Prod. 61, 1531-1534.
  25. Guo, L. Y., Cai, X. F., Lee, J. J., Kang, S. S., Shin, E. M., Zhou, H. Y., Jung, J. W. and Kim, Y. S. (2008) Comparison of suppressive effects of demethoxycurcumin and bisdemethoxycurcumin on expressions of inflammatory mediators in vitro and in vivo. Arch. Pharm. Res. 31, 490-496.
  26. Li, Y. B., Gao, J. L., Lee, S. M., Zhang, Q. W., Hoi, P. M. and Wang, Y. T. (2011) Bisdemethoxycurcumin protects endothelial cells against t-BHP-induced cell damage by regulating the phosphorylation level of ERK1/2 and Akt. Int. J. Mol. Med. 27, 205-211.
  27. Liu, Y. L., Yang, H. P., Gong, L., Tang, C. L. and Wang, H. J. (2011) Hypomethylation effects of curcumin, demethoxycurcumin and bisdemethoxycurcumin on WIF-1 promoter in non-small cell lung cancer cell lines. Mol. Med. Report. 4, 675-679.
  28. Sugo, T., Nakamikawa, C., Tanabe, S. and Matsuda, M. (1995) Activation of prothrombin by factor Xa bound to the membrane surface of human umbilical vein endothelial cells: its catalytic efficiency is similar to that of prothrombinase complex on platelets. J. Biochem. 117, 244-250.
  29. Rao, L. V., Rapaport, S. I. and Lorenzi, M. (1988) Enhancement by human umbilical vein endothelial cells of factor Xa-catalyzed activation of factor VII. Blood. 71, 791-796.
  30. Ghosh, S., Ezban, M., Persson, E., Pendurthi, U., Hedner, U. and Rao, L. V. (2007) Activity and regulation of factor VIIa analogs with increased potency at the endothelial cell surface. J. Thromb. Haemost. 5, 336-346.
  31. Kaiser, L. and Sparks, H. V. Jr. (1987) Endothelial cells. Not just a cellophane wrapper. Arch. Intern. Med. 147, 569-573.
  32. Chong, A. Y., Blann, A. D. and Lip, G. Y. (2003) Assessment of endothelial damage and dysfunction: observations in relation to heart failure. QJM 96, 253-267.
  33. Surapisitchat, J., Hoefen, R. J., Pi, X., Yoshizumi, M., Yan, C. and Berk, B. C. (2001) Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: Inhibitory crosstalk among MAPK family members. Proc. Natl. Acad. Sci. U.S.A. 98, 6476-6481.
  34. Berk, B. C., Abe, J. I., Min, W., Surapisitchat, J. and Yan, C. (2001) Endothelial atheroprotective and anti-inflammatory mechanisms. Ann. N. Y. Acad. Sci. 947, 93-109; discussion 109-111.
  35. Yoshizumi, M., Fujita, Y., Izawa, Y., Suzaki, Y., Kyaw, M., Ali, N., Tsuchiya, K., Kagami, S., Yano, S., Sone, S. and Tamaki, T. (2004) Ebselen inhibits tumor necrosis factor-alpha-induced c-Jun N-terminal kinase activation and adhesion molecule expression in endothelial cells. Exp. Cell. Res. 292, 1-10.
  36. Anand, P., Thomas, S. G., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Sung, B., Tharakan, S. T., Misra, K., Priyadarsini, I. K., Rajasekharan, K. N. and Aggarwal, B. B. (2008) Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol. 76, 1590-1611.
  37. Somparn, P., Phisalaphong, C., Nakornchai, S., Unchern, S. and Morales, N. P. (2007) Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol. Pharm. Bull. 30, 74-78.
  38. Sandur, S. K., Pandey, M. K., Sung, B., Ahn, K. S., Murakami, A., Sethi, G., Limtrakul, P., Badmaev, V. and Aggarwal, B. B. (2007) Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 28, 1765-1773.
  39. Fischer, K. G. (2007) Essentials of anticoagulation in hemodialysis. Hemodial. Int. 11, 178-189.
  40. Bae, J. S. and Rezaie, A. R. (2008) Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thromb. Haemost. 100, 101-109.
  41. Dejana, E., Callioni, A., Quintana, A. and de Gaetano, G. (1979) Bleeding time in laboratory animals. II - A comparison of different assay conditions in rats. Thromb. Res. 15, 191-197.

Cited by

  1. Antiplatelet, anticoagulant, and profibrinolytic activities of baicalin vol.38, pp.5, 2015,
  2. Electrospun polylactide-based materials for curcumin release: Photostability, antimicrobial activity, and anticoagulant effect vol.133, pp.5, 2016,
  3. Antibacterial non-woven nanofibers of curcumin acrylate oligomers vol.39, pp.6, 2015,
  4. Curcumin improves the integrity of blood–spinal cord barrier after compressive spinal cord injury in rats vol.346, pp.1-2, 2014,
  5. Effects of 6-(4-chlorophenoxy)-tetrazolo[5,1-a]phthalazine on Anticoagulation in Mice and the Inhibition of Experimental Thrombosis in Rats vol.64, pp.6, 2014,
  6. Molecular mechanisms of curcumin and its semisynthetic analogues in prostate cancer prevention and treatment vol.152, 2016,
  7. Antiplatelet activities of hyperosidein vitroandin vivo vol.18, pp.3, 2014,
  8. Chemical constituents and biological research on plants in the genusCurcuma vol.57, pp.7, 2017,
  9. Hybridization of polyvinylpyrrolidone to a binary composite of curcumin/α-glucosyl stevia improves both oral absorption and photochemical stability of curcumin vol.213, 2016,
  10. Anti-inflammation performance of curcumin-loaded mesoporous calcium silicate cement vol.116, pp.9, 2017,
  11. Molecular Analysis of Curcumin-induced Polarization of Murine RAW264.7 Macrophages vol.63, pp.6, 2014,
  12. Probable Interaction Between an Oral Vitamin K Antagonist and Turmeric (Curcuma longa) vol.69, pp.6, 2014,
  13. Anti-coagulant activity of plants: mini review vol.44, pp.3, 2017,
  14. Zingiberaceae extracts for pain: a systematic review and meta-analysis vol.14, pp.1, 2015,
  15. Antiplatelet, anticoagulant, and profibrinolytic activities of withaferin A vol.60, pp.3, 2014,
  16. Factor Xa inhibits HMGB1-induced septic responses in human umbilical vein endothelial cells and in mice vol.112, pp.4, 2014,
  17. Antiplatelet, anticoagulant, and profibrinolytic activities of cudratricusxanthone A vol.37, pp.8, 2014,
  18. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease vol.115, pp.03, 2016,
  19. Curcumin may impair iron status when fed to mice for six months vol.2, 2014,
  20. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization vol.62, 2016,
  21. Curcumin inhibits hypoxia-induced proliferation and invasion of MG-63 osteosarcoma cells via downregulating Notch1 vol.15, pp.4, 2017,
  22. Curcumin inhibits hypoxia inducible factor-1α-induced epithelial-mesenchymal transition in HepG2 hepatocellular carcinoma cells vol.10, pp.5, 2014,
  23. Preparation of hemocompatible cellulosic paper based on P(DMAPS)-functionalized surface vol.116, 2014,
  24. Intravenous curcumin efficacy on healing and scar formation in rabbit ear wounds under nonischemic, ischemic, and ischemia-reperfusion conditions vol.22, pp.6, 2014,
  25. Use of complementary and alternative medicine by patients with end-stage renal disease on haemodialysis in Trinidad: A descriptive study vol.17, pp.1, 2017,
  26. Curcumin-loaded poly(l-lactide-co-D,l-lactide) electrospun fibers: Preparation and antioxidant, anticoagulant, and antibacterial properties vol.29, pp.6, 2014,
  27. Anticoagulant activities of piperlonguminine in vitro and in vivo vol.46, pp.10, 2013,
  28. Effects of curcumin on growth of human cervical cancer xenograft in nude mice and underlying mechanism vol.38, pp.1, 2017,
  29. Curcumin-loaded self-nanomicellizing solid dispersion system: part II: in vivo safety and efficacy assessment against behavior deficit in Alzheimer disease vol.8, pp.5, 2018,
  30. Use of Curcumin, a Natural Polyphenol for Targeting Molecular Pathways in Treating Age-Related Neurodegenerative Diseases vol.19, pp.6, 2018,
  31. Curcumin in turmeric: Basic and clinical evidence for a potential role in analgesia vol.43, pp.4, 2018,
  32. Which supplements can I recommend to my osteoarthritis patients? vol.57, pp.suppl_4, 2018,
  33. Therapeutic Potential and Recent Advances of Curcumin in the Treatment of Aging-Associated Diseases vol.23, pp.4, 2018,
  34. An anticoagulant peptide from beta-casein: identification, structure and molecular mechanism vol.10, pp.2, 2019,
  35. Curcumin-Loaded Starch Micro/Nano Particles for Biomedical Application: The Effects of Preparation Parameters on Release Profile pp.00389056, 2019,