Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell

고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향

  • Kim, Deuk Ju (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Nam, Sang Yong (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University)
  • 김득주 (경상대학교 나노신소재공학과, 공학연구원, 아이큐브 사업단) ;
  • 남상용 (경상대학교 나노신소재공학과, 공학연구원, 아이큐브 사업단)
  • Received : 2012.06.05
  • Accepted : 2012.06.25
  • Published : 2012.06.29

Abstract

Fuel cells have been considered as alternative power generation system in the twenty-first century because of eco-friendly system, high power density and efficiency compare with petroleum engine system. Proton exchange membranes (PEMs) are the key components in fuel cell system. Currently, Nafion has been used in fuel cell system. However, Nafion has disadvantages such as low conductivity at high temperature and high cost. The researchers have focused to reach the high properties such as high proton conductivity, low permeability to fuel, good chemical/thermal stability, good mechanical properties and low manufacturing cost. Various methods have been developed for preparation of proton exchange membrane with high performance and commercialization of fuel cell system. The hybrid organic/inorganic membrane has the potentials to provide a unique combination of organic and inorganic properties with improved proton conductivity and mechanical property at high temperatures. So, this paper presents an overview of research trend for the composite membranes prepared by organic/inorganic system using various inorganic materials.

References

  1. M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000). https://doi.org/10.1016/S0079-6700(00)00032-0
  2. D. J. Kim, H. Y. Hwang, and S. Y. Nam, "Characterization of hybrid membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications", Membrane Journal, 21, 389 (2011).
  3. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, "Alternative polymer systems for proton exchange membranes (PEMs)", Chem. Rev., 104, 4587 (2004). https://doi.org/10.1021/cr020711a
  4. J. Y. Park, J. k. Choi, K. J. Choi, T. S. Hwang, H. J. Kim, and Y. T. Hong, "Effects of Mixed Casting Solvents on Morphology and Characteristics of Sulfonated Poly (aryl ether sulfone) Membranes for DMFC Applications", Membrane Journal, 18, 282 (2008).
  5. K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", J. Membr. Sci., 185, 29 (2001). https://doi.org/10.1016/S0376-7388(00)00632-3
  6. K. S. Yoon, J. H. Choi, J. K. Choi, S. K. Hong, Y. T. Hong, and H. S. Byun, "Fabrication and characteristics of partially covalent-crosslinked polys (arylene ether sulfone) for Use in a Fuel Cell", Membrane Journal, 18, 274 (2008).
  7. S. J. Hamrock and M. A. Yandrasits, "Proton exchange membranes for fuel cell applications", J. Macromol. Sci., Part C: Polymer Reviews, 46, 219 (2006). https://doi.org/10.1080/15583720600796474
  8. M. Amjadi, S. J. Peighambardoust, S. Rowshanzamir, and S. Sedghi, "Preparation, characterization and cell performance of durable Nafion/$SiO_2$ hybrid membrane for high-temperature polymeric fuel cells", J. Power Sources, 210, 350 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.011
  9. T. Xu, J. J. Woo, S. J. Seo, and S. H. Moon, "In situ polymerization: A novel route for thermally stable proton-conductive membranes", J. Membr. Sci., 325, 209 (2008). https://doi.org/10.1016/j.memsci.2008.07.036
  10. J. Joseph, C. Y. Tseng, and B. J. Hwang, "Phosphonic acid-grafted mesostructured silica/Nafion hybrid membranes for fuel cell applications", J. Power Sources, 196, 7363 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.090
  11. M. Linlin, A. K. Mishra, N. H. Kim, and J. H. Lee, "Poly (2, 5-benzimidazole)-silica nanocomposite membranes for high temperature proton exchange membrane fuel cell", J. Membr. Sci., 411, 91 (2012).
  12. Y. N. Chang, J. Y. Lai, and Y. L. Liu, "Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells", J. Membr. Sci., 403, 1 (2012).
  13. S. Y. So, Y. J. Yoon, T. H. Kim, K. Yoon, and Y. T. Hong, "Sulfonated poly(arylene ether sulfone)/ functionalized silicate hybrid proton conductors for high-temperature proton exchange membrane fuel cells", J. Membr. Sci., 381, 204 (2011). https://doi.org/10.1016/j.memsci.2011.07.024
  14. U. Thanganathan, Y. Nishina, K. Kimura, S. Hayakawa, and R. Bobba, "Characterization of hybrid composite membrane based polymer/precursor/$SiO_2$", Mater. Lett., 81, 88 (2012). https://doi.org/10.1016/j.matlet.2012.04.023
  15. T. Uma and M. Nogami, "Synthesis of mixed composite membranes based polymer/HPA : electrochemical performances on low temperature PEMFCs", J. Membr. Sci., 411, 109 (2012).
  16. J. R. Lee, J. H. Won, N. Y. Kim, M. S. Lee, and S. Y. Lee, "Hydrophilicity/porous structure-tuned, $SiO_2$/polyetherimide-coated polyimide nonwoven porous substrates for reinforced composite proton exchange membranes", J. Colloid Interface Sci., 362, 607 (2011). https://doi.org/10.1016/j.jcis.2011.06.076
  17. R. Padmavathi, R. Karthikumar, and D. Sangeetha, "Multilayered sulphonated polysulfone/silica composite membranes for fuel cell applications", Electrochim. Acta., 71, 283 (2012). https://doi.org/10.1016/j.electacta.2012.04.015
  18. N. N. Krishnan, D. Henkensmeier, J. H. Jang, H. J. Kim, V. Rebbin, I. H. Oh, S. A. Hong, S. W. Nam, and T. H. Lim, "Sulfonated poly (ether sulfone)- based silica nanocomposite membranes for high temperature polymer electrolyte fuel cell applications", Int. J. Hydrogen Energy., 36, 7152 (2011). https://doi.org/10.1016/j.ijhydene.2011.03.015
  19. S. K. Bhattacharya, "Metal-filled polymers : properties and applications", vol. 11 : CRC (1986).
  20. F. J. Pinar, P. Canizares, M. A. Rodrigo, D. Ubeda, and J. Lobato, "Titanium composite PBIbased membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount", RSC Adv., 2, 1547 (2012). https://doi.org/10.1039/c1ra01084k
  21. J. Lobato, P. Canizares, M. A. Rodrigo, D. Ubeda, and F. J. Pinar, "A novel titanium PBI-based composite membrane for high temperature PEMFCs", J. Membr. Sci., 369, 105 (2011). https://doi.org/10.1016/j.memsci.2010.11.051
  22. Q. Li, C. Xiao, H. Zhang, F. Chen, P. Fang, and M. Pan, "Polymer electrolyte membranes containing titanate nanotubes for elevated temperature fuel cells under low relative humidity", J. Power Sources, 196, 8250 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.082
  23. J. Jaafar, A. F. Ismail, and T. Matsuura, "Effect of dispersion state of $Cloisite15A^{(R)}$ on the performance of SPEEK/Cloisite15A nanocomposite membrane for DMFC application", J. Appl. Polym. Sci., 124, 969 (2012). https://doi.org/10.1002/app.35139
  24. S. Ghosh, A. Sannigrahi, S. Maity, and T. Jana, "Role of clays structures on the polybenzimidazole nanocomposites : potential membranes for the use in polymer electrolyte membrane fuel cell", J. Phys. Chem. C, 115, 11474 (2011). https://doi.org/10.1021/jp202672s
  25. V. T. Magalad, S. S. Pattanashetti, G. S. Gokavi, M. N. Nadagouda, and T. M. Aminabhavi, "Proton conducting properties of nanocomposite membranes of chitosan", Chem. Eng. J., 189, 1 (2012).
  26. D. J. Kim, H. Y. Hwang, S. Y. Nam, and Y. T. Hong, "Characterization of a composite membrane based on SPAES/Sulfonated montmorillonite for DMFC application", Macromol. Res., 20, 21 (2012). https://doi.org/10.1007/s13233-012-0004-7
  27. D. J. Kim, H. Y. Hwang, and S. Y. Nam, "Sulfonated poly (arylene ether sulfone)/Laponite-$SO_3H$ composite membrane for direct methanol fuel cell", Journal of Industrial and Engineering Chemistry, 18, 556 (2012). https://doi.org/10.1016/j.jiec.2011.11.128
  28. S. S. Madaeni, S. Amirinejad, and M. Amirinejad, "Phosphotungstic acid doped poly (vinyl alcohol)/ poly (ether sulfone) blend composite membranes for direct methanol fuel cells", J. Membr. Sci., 380, 132 (2011). https://doi.org/10.1016/j.memsci.2011.06.038
  29. Y. Xiang, M. Yang, J. Zhang, F. Lan, and S. Lu, "Phosphotungstic acid (HPW) molecules anchored in the bulk of Nafion as methanol-blocking membrane for direct methanol fuel cells", J. Membr. Sci., 368, 241 (2011). https://doi.org/10.1016/j.memsci.2010.11.049
  30. M. Amirinejad, S. S. Madaeni, E. Rafiee, and S. Amirinejad, "Cesium hydrogen salt of Heteropolyacids/ Nafion nanocomposite membranes for proton exchange membrane fuel cells", J. Membr. Sci., 377, 89 (2011). https://doi.org/10.1016/j.memsci.2011.04.014
  31. Z. Cui, W. Xing, C. Liu, J. Liao, and H. Zhang, "Chitosan/heteropolyacid composite membranes for direct methanol fuel cell", J. Power Sources, 188, 24 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.108
  32. A. C. Cole, J. L. Jensen, I. Ntai, K. L. T. Tran, K. J. Weaver, D. C. Forbes, and J. H. Davis Jr, "Novel Bronsted acidic ionic liquids and their use as dual solvent-catalysts", J. Am. Chem. Soc., 124, 5962 (2002). https://doi.org/10.1021/ja026290w
  33. T. Sato, T. Maruo, S. Marukane, and K. Takagi, "Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells", J. Power Sources, 138, 253 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.027
  34. E. A. Mistri, A. K. Mohanty, and S. Banerjee, "Synthesis and characterization of new fluorinated Poly (ether imide) copolymers with controlled degree of sulfonation for proton exchange membranes", J. Membr. Sci., 119, 117 (2011).
  35. J. T. W. Wang and S. L. C. Hsu, "Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids", Electrochim. Acta., 56, 2842 (2011). https://doi.org/10.1016/j.electacta.2010.12.069
  36. W. Li, F. Zhang, S. Yi, C. Huang, H. Zhang, and M. Pan, "Effects of casting solvent on microstructrue and ionic conductivity of anhydrous sulfonated poly (ether ether ketone)-inoic liquid composite membranes", Int. J. Hydrogen Energy, 37, 748 (2012). https://doi.org/10.1016/j.ijhydene.2011.04.066
  37. F. Chu, B. Lin, F. Yan, L. Qiu, and J. Lu, "Macromolecular protic ionic liquid-based proton-conducting membranes for anhydrous proton exchange membrane application", J. Power Sources, 196, 7979 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.064
  38. T. W. Kim, M. Sahimi, and T. T. Tsotsis, "Hybrid hydrotalcite-sulfonated poly(ether ether ketone) cation exchange membranes prepared by in situ sulfonation", Ind. Eng. Chem. Res., 50, 3880 (2011). https://doi.org/10.1021/ie1019563
  39. L. Nie, J. Wang, T. Xu, H. Dong, H. Wu, and Z. Jiang, "Enhancing proton conduction under low humidity by incorporating core-shell polymeric phosphonic acid submicrospheres into sulfonated poly (ether ether ketone) membrane", J. Power Sources, 213, 1, (2012). https://doi.org/10.1016/j.jpowsour.2012.03.108
  40. V. S. Rangasamy, S. Thayumanasundaram, N. De Greef, J. W. Seo, and J. P. Locquet, "Preparation and characterization of composite membranes based on sulfonated PEEK and $AlPO_4$ for PEMFCs", Solid State Ionics, 216, 83 (2012). https://doi.org/10.1016/j.ssi.2012.03.017
  41. Y. Gao, W. Li, W. C. L. Lay, H. G. L. Coster, A. G. Fane, and C. Y. Tang, "Characterization of forward osmosis membranes by electrochemical impedance spectroscopy", Desalination, In Press.
  42. F. Xu, S. Mu, and M. Pan, "Mineral nanofibre reinforced composite polymer electrolyte membranes with enhanced water retention capability in PEM fuel cells", J. Membr. Sci., 377, 134 (2011). https://doi.org/10.1016/j.memsci.2011.04.027