Development of High Performance Nanocomposites using Functionalized Plant Oil Resins

식물성오일 레진을 이용한 고기능성 나노 복합재료의 개발

  • Han, Song-Yi (School of Applied Chemical Engineering, Chonnam National University) ;
  • Jung, Young-Hee (School of Applied Chemical Engineering, Chonnam National University) ;
  • Oh, Jeong-Seok (Polymeric Materials Research Team, Hyundai Motor R&D Division) ;
  • Kaang, Shin-Young (School of Applied Chemical Engineering, Chonnam National University) ;
  • Hong, Chang-Kook (School of Applied Chemical Engineering, Chonnam National University)
  • 한송이 (전남대학교 신화학소재공학과 응용화학공학부) ;
  • 정영희 (전남대학교 신화학소재공학과 응용화학공학부) ;
  • 오정석 (현대자동차 연구개발본부 고분자재료연구팀) ;
  • 강신영 (전남대학교 신화학소재공학과 응용화학공학부) ;
  • 홍창국 (전남대학교 신화학소재공학과 응용화학공학부)
  • Received : 2012.01.09
  • Accepted : 2012.01.26
  • Published : 2012.03.31


In this study, in order to develop renewable bio-based nanocomposites, multi-functional nanocomposites from soybean resins (AESO, MAESO) and nanoclay were prepared. Photoelectrodes for environmental friendly dye-sensitized solar cell using soybean resin were also prepared. Organo-modified nanoclay was directly dispersed in functionalized soybean resins after mixing with styrene as a comonomer and radical initiator was used to copolymerize the nanocomposites. The observed morphology was a mixture of intercalated/exfoliated structure and the physical properties were improved by adding nanoclay. A nanocomposite using MAESO, which added COOH functional group to the soybean resin, showed better dispersibility than AESO composites. Ultrasonic treatment of the nanocomposites also improved the physical properties. Nanoporous $TiO_2$ photoelectrode was also prepared using soybean resins as a binder, after acid-treatment of $TiO_2$ surface using nitric acid. Dye-sensitized solar cells were prepared after adsorbing dye molecules on it. The $TiO_2$ photoelectrode prepared using soybean binder had high current density because of increased surface area by improved dispersibility. The photoelectrochemical properties and conversion efficiency of the solar cell were significantly improved using the soybean binder.


  1. 조동환, 바이오복합재료, 고분자 과학과 기술, 13, 1 (2002).
  2. 한성옥, 김홍수, 박주석, 안영수, 김준수, 김시경, 유윤종, 조철희, Lawrence T. Drzal, 나노 및 바이오 소재를 이용한 환경친화형 바이오복합재료, 제 19회 에너지절약 기술 Workshop, 한국에너지기술연구원, 2004년 11월 11-12일.
  3. B. K. G. Theng, "Formation and Properties of Clay-Polymer Complexes", Elsevier, Amsterdam (1979).
  4. G. Lagaly, "Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanocomposites", Appl. Clay. Sci., 15, 1 (1999).
  5. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, "Polymer-layered silicate nanocomposites: an overview", Appl, Clay. Sci., 15, 11 (1999).
  6. 이상수, 박민, 임순호, 김준경, 황진택, Nanoclay Polymer Nanocomposite의 개발 동향 및 응용, 고분자 과학과 기술, 18, 1 (2007).
  7. T. J. Pinnavaia and G. W. Beall, "Polymer-Clay Nanocomposites", John Wiley & Sons, Chichester (2000).
  8. J. Lu and R. P. Wool, "Sheet molding compound resins from soybean oil: Thickening behavior and mechanical properties", polym. Eng. Sci., 47, 1469 (2007).
  9. D. K. Lee et al., Desalination, "Synthesis and characterization of crosslinked triblock copolymers for fuel cells", 233, 104 (2008).
  10. M. L. Auad, M. Aranguren, and J. Borrajo, "Epoxy-based divinyl ester resin/styrene copolymers: Composition depend ence of the mechanical and thermal properties", J. Appl. Polym. Sci., 66, 1059 (1997).<1059::AID-APP6>3.0.CO;2-H
  11. R. A. Vaia, B. B. Sauer, O. K. Tse, and E. P. Giannelis, "Relaxations of confined chains in polymer nanocomposites: Glass transition properties of poly(ethylene oxide) intercalated in montmorillonite", J. Polym. Sci. PartB. Polym. Phys., 35, 59 (1997).<59::AID-POLB4>3.0.CO;2-Q
  12. L. Priya and J. P. Jog, "Intercalated poly(vinylidene fluoride)/ clay nanocomposites: Structure and properties", J. polym. Sci. Part B : Polym. Phys., 41, 31 (2003).
  13. A. B. Morgan and J. D. Harris, "Exfoliated polystyrene-clay nanocomposites synthesized by solvent blending with sonication", Polymer, 45, 8695 (2004)
  14. B. Guo, Z. Liu, L. Hong, and H. Jiang, "Sol gel derived photocatalytic porous $TiO_{2}$ thin films", Surf. Coat. Technol., 198, 24 (2005).
  15. T. Hoshikawa, M. Yamada, R. Kikuchi, and K. Eguchi, "Impedance Analysis of Internal Resistance Affecting the Photoelectrochemical Performance of Dye-Sensitized Solar Cells", J. Electrochem. Soc., 152, E68 (2005).