DOI QR코드

DOI QR Code

C-parallel Mean Curvature Vector Fields along Slant Curves in Sasakian 3-manifolds

Lee, Ji-Eun;Suh, Young-Jin;Lee, Hyun-Jin

  • Received : 2010.10.08
  • Accepted : 2011.11.23
  • Published : 2012.03.23

Abstract

In this article, using the example of C. Camci([7]) we reconfirm necessary sufficient condition for a slant curve. Next, we find some necessary and sufficient conditions for a slant curve in a Sasakian 3-manifold to have: (i) a $C$-parallel mean curvature vector field; (ii) a $C$-proper mean curvature vector field (in the normal bundle).

Keywords

Slant curves;Mean curvature vector fields;$C$-parallel;Sasakian manifolds

References

  1. J. Arroyo, M. Barros and O. J. Garay, it A characterisation of Helices and Cornu spirals in real space forms, Bull. Austral. Math. Soc., 56(1)(1997), 37-4 https://doi.org/10.1017/S0004972700030719
  2. C. Baikoussis and D. E. Blair, On Legendre curves in contact 3-manifolds, Geom. Dedicata 49 (1994), 135-142. https://doi.org/10.1007/BF01610616
  3. M. Barros and O. J. Garay, On submanifolds with harmonic mean curvature, Proc. Amer. Math. Soc., 123(1995), 2545-2549. https://doi.org/10.1090/S0002-9939-1995-1254831-7
  4. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Math., 203, Birkhauser, Boston, Basel, Berlin, 2002.
  5. D. E. Blair, F. Dillen, L. Verstraelen and L. Varncken, Calabi curves as holomorphic Legendre curves and Chen's inequality, Kyunpook Math. J., 35(1996), 407-416.
  6. R. Caddeo, C. Oniciuc and P. Piu, Explicit formulas for biharmonic non-geodesic curves of the Heisenberg group, Rend. Sem. Mat. Univ. e Politec. Torino, 62(3)(2004), 265-278.
  7. C. Camci, Extended cross product in a 3-dimensionsal almost contact metric manifold with applications to curve theory, Turk. J. Math., 35(2011), 1-14.
  8. B. Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17(1991), no. 2, 169-188.
  9. B. Y. Chen, Some classification theorems for submanifolds in Minkowski space-time, Arch. Math. (Basel), 62(1994), 177-182. https://doi.org/10.1007/BF01198672
  10. J. T. Cho, J. Inoguchi and J.-E. Lee, Slant curves in Sasakian 3-manifolds, Bull. Aust. Math. Soc. 74(2006), no. 3, 359-367. https://doi.org/10.1017/S0004972700040429
  11. J. T. Cho and J.-E. Lee, Slant curves in contact pseudo-Hermitian 3-manifolds. Bull. Aust. Math. Soc., 78(2008), no. 3, 383-396. https://doi.org/10.1017/S0004972708000737
  12. J. T. Cho, J. Inoguchi and J.-E. Lee, Biharmonic curves in Sasakian space forms, Ann. Mat. Pura Appl., 186(2007), 685-701. https://doi.org/10.1007/s10231-006-0026-x
  13. J. Inoguchi, Submanifolds with harmonic mean curvature vector field in contact 3- manifolds, Colloq. Math., 100(2004), 163-179. https://doi.org/10.4064/cm100-2-2
  14. J.-E. Lee, On Legendre curves in contact pseudo-Hermitian 3-manifolds, Bull. Aust. Math. Soc. 78(2010), no. 3, 383-396.
  15. C. Ozgur, M. M. Tripathi, On Legendre curves in $\alpha$-Sasakian manifolds, Bull. Malays. Math. Sci. Soc., 31(2)(2008), no. 1, 91-96.
  16. S. Tanno, Sur une variete de K-contact metrique de dimension 3, C. R. Acad. Sci. Paris Ser. A-B, 263(1966), A317-A319.

Cited by

  1. On slant curves in normal almost contact metric 3-manifolds vol.55, pp.2, 2014, https://doi.org/10.1007/s13366-013-0175-1
  2. PSEUDOHERMITIAN LEGENDRE SURFACES OF SASAKIAN SPACE FORMS vol.30, pp.4, 2015, https://doi.org/10.4134/CKMS.2015.30.4.457

Acknowledgement

Supported by : National Research Foundation of Korea