DOI QR코드

DOI QR Code

Performance Comparison of Fast Distributed Video Decoding Methods Using Correlation between LDPCA Frames

LDPCA 프레임간 상관성을 이용한 고속 분산 비디오 복호화 기법의 성능 비교

  • 김만재 (한밭대학교 정보통신전문대학원 멀티미디어공학과) ;
  • 김진수 (한밭대학교 정보통신전문대학원 멀티미디어공학과)
  • Received : 2012.02.22
  • Accepted : 2012.03.13
  • Published : 2012.04.28

Abstract

DVC(Distributed Video Coding) techniques have been attracting a lot of research works since these enable us to implement the light-weight video encoder and to provide good coding efficiency by introducing the feedback channel. However, the feedback channel causes the decoder to increase the decoding complexity and requires very high decoding latency because of numerous iterative decoding processes. So, in order to reduce the decoding delay and then to implement in a real-time environment, this paper proposes several parity bit estimation methods which are based on the temporal correlation, spatial correlation and spatio-temporal correlations between LDPCA frames on each bit plane in the consecutive video frames in pixel-domain Wyner-Ziv video coding scheme and then the performances of these methods are compared in fast DVC scheme. Through computer simulations, it is shown that the adaptive spatio-temporal correlation-based estimation method and the temporal correlation-based estimation method outperform others for the video frames with the highly active contents and the low active contents, respectively. By using these results, the proposed estimation schemes will be able to be effectively used in a variety of different applications.

Keywords

Fast DVC;Parity Bit Estimation;LDPCA

Acknowledgement

Supported by : 한국연구재단

References

  1. R. Puri and K. Ramchandran, "PRISM: A New Robust Video Coding Architecture Based on Distributed Compression Principles," 40th Allerton Conference on Communication, Control and Computing, Allerton, USA, pp.1-10, 2002(10).
  2. A. Aaron, R. Zhang, and B. Girod, "Wyner-Ziv Coding of Motion Video," Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, pp.240-244, 2002(11).
  3. F. Pereira, C. Brites, J. Ascenso, and M. Tagliasacchi, "Wyner-Ziv video coding: A Review of The Early Architectures and Further Developments," IEEE Intl. Conf. on Multimedia and Expo, Hannover, Germany, pp.625-628, 2008(6).
  4. J. S. Kim, J. G. Kim, and K. D. Seo, "A Selective Block Encoding Scheme Based on Motion Information Feedback in Distributed Video Coding," IEICE Transactions on Communications, Vol.E94-B, No.3, pp.860-862, 2011(3). https://doi.org/10.1587/transcom.E94.B.860
  5. R. Y. Shao, S. Lin, and M. P. C. Fossorier, "Two Simple Stopping Criteria for Turbo Decoding," IEEE Trans. Comm, Vol.47, pp.1117-1120, 1999(8). https://doi.org/10.1109/26.780444
  6. 오량근, 심혁재, 전병우, "적응적 경판정 출력을 이용한 고속 분산 비디오 복호화 기술", 대한전자공학회 논문지, 제47권, SP편, 제6호, pp.66-74, 2010(11).
  7. 심혁재, 오량근, 전병우, "패리티 요구량 예측을 이용한 적응적 경판정 출력 기반 고속 분산 비디오 복호화 기술", 한국방송공학회논문지, 제16권, 제4호, pp.635-646, 2011(7). https://doi.org/10.5909/JEB.2011.16.4.635
  8. 김만재, 김진수, "프레임간 적응적 연산을 이용한 패리티 비트의 예측에 의한 고속 분산 복호화", 한국정보통신학회 추계학술대회, 2011(10).
  9. 김진수, "움직임 보상 보간 프레임에 대한 프레임 적응적 왜곡 예측기법," 한국콘텐츠학회논문지, 제12권 제3호, 2012년3월, pp.1-8 https://doi.org/10.5392/JKCA.2012.12.03.001
  10. http://iphone.hhi.de/suehring/tml