Computer-Aided Diagnosis for Liver Cirrhosis using Texture features Information Analysis in Computed Tomography

컴퓨터단층영상에서 TIA를 이용한 간경화의 컴퓨터보조진단

  • 김창수 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 고성진 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 강세식 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김동현 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 최석윤 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2012.02.14
  • Accepted : 2012.03.09
  • Published : 2012.04.28


Cirrhosis is a consequence of chronic liver disease characterized by replacement of liver tissue by fibrosis, scar tissue and regenerative nodules leading to loss of liver function. Liver Cirrhosis is most commonly caused by alcoholism, hepatitis B and C, and fatty liver disease, but has many other possible causes. Some cases are idiopathic disease from unknown cause. Abdomen of liver Computed tomography(CT) is one of the primary imaging procedures for evaluating liver disease such as liver cirrhosis, Alcoholic liver disease(ALD), cancer, and interval changes because it is economical and easy to use. The purpose of this study is to detect technique for computer-aided diagnosis(CAD) to identify liver cirrhosis in abdomen CT. We experimented on the principal components analysis(PCA) algorithm in the other method and suggested texture information analysis(TIA). Forty clinical cases involving a total of 634 CT sectional images were used in this study. Liver cirrhosis was detected by PCA method(detection rate of 35%), and by TIA methods(detection rate of 100%-AGI, TM, MU, EN). Our present results show that our method can be regarded as a technique for CAD systems to detect liver cirrhosis in CT liver images.


Liver Cirrhosis;Computer Aided Diagnosis;Texture feature Information Analysis;Principal Component Analysis


Supported by : 부산가톨릭대학교


  1. 의학교육연수원편, 가정의학, 서울대학교출판부, pp.382-388, 2006.
  2. 전대원, 간경화 진행정도에 대한 객관적 평가모델, 한양대학교 대학원 석사학위논문, pp.10-24. 2000.
  3. 조재수, 강현수, 김흥수, 김성득, 멀티미디어 신호처리 이론 및 실습 2nd edition, 성진미디어, 2011.
  4. 박형후, PCA를 이용한 단순 흉부영상에서 폐암 인식에 관한 연구, 부산가톨릭대학교 생명과학대학원 석사학위논문, 2008.
  5. Y. Jianhua, D. Andrew, R. M. Summers, and D. J. Mollura, "Computer-aided Diagnosis of Pulmonary Infections Using Texture analysis and Support Vector Machine Classification," Academic Radiology, Vol.18, No.3, pp.306-314, 2011.
  6. 김대훈, 고성진, 강세식, 김정훈, 김창수, "질감분석을 이용한 폐결핵의 자동진단", 한국콘텐츠학회 논문지 제11권, 제11호, pp.185-193, 2011.
  7. 유현중, 김태우, Matlab을 이용한 디지털 영상처리, ITC, pp.465-520, 2004.
  8. 고병철, Visual $C^{+ +}$기반의 의료영상처리 프로그래밍, 도서출판 그린, pp.255-289, 2011.
  9. R. C. Gonzalez and R. E. Woods, Digital Image Processing 2nd Edition, Pearson Education, 2002.

Cited by

  1. Application of Texture Features algorithm using Computer Aided Diagnosis of Papillary Thyroid Cancer in the Ultrasonography vol.13, pp.5, 2013,
  2. Application of Computer-Aided Diagnosis a using Texture Feature Analysis Algorithm in Breast US images vol.16, pp.1, 2015,