DOI QR코드

DOI QR Code

Comparison of peptide guanidination efficiency using various reaction conditions

다양한 조건에서 펩타이드의 Guanidination 변형 효율 비교 연구

  • Received : 2011.10.27
  • Accepted : 2012.02.23
  • Published : 2012.04.25

Abstract

For the qualitative analysis of peptides in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS), O-methylisourea, which is chemically bound to a specific site of an amino acid (e.g. lysine) of peptides and improves the intensities of the modified peptides, is frequently used prior to the MALDI-MS analysis of peptides, where the process is called guanidination. The reaction efficiency of guanidination varies depending on the reaction conditions. We investigated the efficiencies of guanidination of tryptically digested myoglobin using three different reagents (O-methylisourea, S-methylisothiourea, and 2-methyl-2-imidazoline) at $65^{\circ}C$ for 1 h with various pH conditions (pH 4.0, 7.0, and 10.5), where O-methylisourea and pH 10.5 were found to be most effective. The guanidination with O-methylisourea at pH 10.5 were then applied with different reaction conditions such as heating, microwave and ultrasound at various times, where heating for 60 min was found to be most effective. Conclusively, guanidination with O-methylisourea at $65^{\circ}C$ for 1 h at pH 10.5 was found to be the optimized condition.

Keywords

O-methylisourea;S-methylisourea;2-methyl-2-imidazoline;guanidination;mass spectrometry;MALDI-MS

References

  1. J. R. Yates, 3rd, J. Mass Spectrom., 33, 1-19 (1998). https://doi.org/10.1002/(SICI)1096-9888(199801)33:1<1::AID-JMS624>3.0.CO;2-9
  2. Q. Luo, K. Tang, F. Yang, A. Elias, Y. Shen, R. J. Moore, R. Zhao, K. K. Hixson, S. S. Rossie and R. D. Smith, J. Proteome Res., 5, 1091-1097 (2006). https://doi.org/10.1021/pr050424y
  3. H. Han, S. Nho, A. Lee and J. Kim, B. Korean Chem. Soc., 31, 1527-1534 (2010). https://doi.org/10.5012/bkcs.2010.31.6.1527
  4. A. Lee, H. J. Yang, Y. Kim and J. Kim, B. Korean Chem. Soc., 30, 1127-1130 (2009). https://doi.org/10.5012/bkcs.2009.30.5.1127
  5. A. Lee, H. J. Yang, E. S. Lim, J. Kim and Y. Kim, Rapid Commun. Mass Spectrom., 22, 2561-2564 (2008). https://doi.org/10.1002/rcm.3652
  6. S. Laugesen and P. Roepstorff, J. Am. Soc. Mass. Spectrom, 14, 992-1002 (2003). https://doi.org/10.1016/S1044-0305(03)00262-9
  7. A. Tholey and E. Heinzle, Anal. Bioanal. Chem., 386, 24-37 (2006). https://doi.org/10.1007/s00216-006-0600-5
  8. R. L. Beardsley and J. P. Reilly, Anal. Chem., 74, 1884- 1890 (2002). https://doi.org/10.1021/ac015613o
  9. J. E. Hale, J. P. Butler, M. D. Knierman and G. W. Becker, Anal. Biochem., 287, 110-117 (2000). https://doi.org/10.1006/abio.2000.4834
  10. C. O. Kappe, Angew. Chem. Int. Ed. Engl., 43, 6250- 6284 (2004). https://doi.org/10.1002/anie.200400655
  11. M. Galesio, D. V. Vieira, R. Rial-Otero, C. Lodeiro, I. Moura and J. L. Capelo, J. Proteome Res., 7, 2097- 2106 (2008). https://doi.org/10.1021/pr700850w
  12. H. F. Juan, S. C. Chang, H. C. Huang and S. T. Chen, Proteomics, 5, 840-842 (2005). https://doi.org/10.1002/pmic.200401056
  13. S. Shin, H. J. Yang, J. Kim and J. Kim, Anal. Biochem., 414, 125-130 (2011). https://doi.org/10.1016/j.ab.2011.02.026
  14. F. L. Brancia, S. G. Oliver and S. J. Gaskell, Rapid Commun. Mass Spectrom, 14, 2070-2073 (2000). https://doi.org/10.1002/1097-0231(20001115)14:21<2070::AID-RCM133>3.0.CO;2-G

Acknowledgement

Supported by : 한국과학창의재단