Computational aspects of guided wave based damage localization algorithms in flat anisotropic structures

  • Moll, Jochen (Goethe University of Frankfurt, Department of Physics, Terahertz Photonics Group) ;
  • Torres-Arredondo, Miguel Angel (University of Siegen, Institute of Mechanics and Control Engineering-Mechatronics) ;
  • Fritzen, Claus-Peter (University of Siegen, Institute of Mechanics and Control Engineering-Mechatronics)
  • Received : 2011.05.17
  • Accepted : 2012.07.22
  • Published : 2012.09.25


Guided waves have shown a great potential for structural health monitoring (SHM) applications. In contrast to traditional non-destructive testing (NDT) methodologies, a key element of SHM approaches is the high process of automation. The monitoring system should decide autonomously whether the host structure is intact or not. A basic requirement for the realization of such a system is that the sensors are permanently installed on the host structure. Thus, baseline measurements become available that can be used for diagnostic purposes, i.e., damage detection, localization, etc. This paper contributes to guided wave-based inspection in anisotropic materials for SHM purposes. Therefore, computational strategies are described for both, the solution of the complex equations for wave propagation analysis in composite materials based on exact elasticity theory and the popular global matrix method, as well as the underlying equations of two active damage localization algorithms for anisotropic structures. The result of the global matrix method is an angular and frequency dependent wave velocity characteristic that is used subsequently in the localization procedures. Numerical simulations and experimental investigations through time-delay measurements are carried out in order to validate the proposed theoretical model. An exemplary case study including the calculation of dispersion curves and damage localization is conducted on an exemplary unidirectional composite structure where the ultrasonic signals processed in the localization step are simulated with the spectral element method. The proposed study demonstrates the capabilities of the proposed algorithms for accurate damage localization in anisotropic structures.


structural health monitoring;damage localization;guided ultrasonic waves;global matrix method;dispersion analysis


  1. Auld, B.A. (1973), Acoustic Fields and Waves in Solids, Wiley-Interscience, New York.
  2. Barkanov, E., Chate, A., Rucevskis, S. and Skukis, E. (2007), "Characterisation of composite material properties by an inverse technique", Key Eng. Mater., 345-346(1), 1319-1322.
  3. Calomfirescu, M. and Herrmann, A.S. (2007), "On the propagation of lamb waves in viscoelastic composites for shm applications", Key Eng. Mater., 347(1), 543-548.
  4. Castaings, M. Hosten, B. and Kundu, T. (2000), "Inversion of ultrasonic, plane-wave transmission data in composite plates to infer viscoelastic material properties", NDT & E. Int., 33(6), 377-392.
  5. Clarke, T. Simonetti, F. and Cawley, P. (2010), "Guided wave health monitoring of complex structures by sparse array systems: influence of temperature changes on performance", J. Sound Vib., 329(12), 2306-2322.
  6. Croxford, A.J., Moll, J., Wilcox, P.D. and Michaels, J.E. (2010), "Efficient temperature compensation strategies for guided wave structural health monitoring", Ultrasonics, 50(4-5), 517-528.
  7. Davies, J., Simonetti, F., Lowe, M. and Cawley, P. (2006), "Review of synthetically focused guided wave imaging techniques with application to defect sizing", Proceedings of the European Conference on Nondestructive Testing, Berlin, Deutschland,, 142-149.
  8. Grosse, C.U. and Reinhardt, H.W. (1999), "Schallemissionsquellen automatisch lokalisieren - entwicklung eines algorithmus", Materialprüfung, 41(9), 342-347.
  9. Hartmann, B., Moll, J., Nelles, O. and Fritzen, C.P. (2010), "Modeling of nonlinear wave velocity characteristics in a structural health monitoring system", Proceedings of the IEEE Multi-Conference on Systems and Control, Tokyo Bay, Japan, 1011-1016.
  10. Hartmann, B., Moll, J., Nelles, O. and Fritzen, C.P. (2011), "Hierarchical local model trees for design of experiments in the framework of ultrasonic structural health monitoring", Proceedings of the IEEE Multi-Conference on Systems and Control, Denver, USA, 1163-1170.
  11. Hayashi, T. and Kawashima, K. (2002), "Multiple reflections of lamb waves at a delamination", Ultrasonics, 40(1-8), 193-197.
  12. Hearn, E.J. (1977), Mechanics of materials: An introduction to the mechanics of elastic and plastic deformation of solids and structural components, International Series on Materials Science and Technology, 1st Ed.
  13. Konstantinidis, G., Drinkwater, B.W. and Wilcox, P.D. (2006), "The temperature stability of guided wave structural health monitoring systems", Smart Mater. Struct., 15(4), 967-976.
  14. Kundu, T. (2004), Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, London, CRC Press.
  15. Li, F., Meng, G., Ye, L. and Kageyama, K. (2009), "Dispersion analysis of lamb waves and damage detection for aluminum structures using ridge in the time-scale domain", Measurement Sci. Tech., 20(9).
  16. Lowe, M.J.S. (1993), Plate waves for the NDT of diffusion bonded titanium. Imperial College of Science, Technology and Medicine, London.
  17. Lowe, M.J.S. (1995), "Matrix techniques for modeling ultrasonic waves in multilayered media", IEEE T. Ultrason. Ferr., 42(4), 525-542.
  18. Lu, Y. and Michaels, J.E. (2005), "A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations", Ultrasonics, 43(9), 717-731.
  19. Malinowski, P., Wandowski, T., Trendafilova, I. and Ostachowicz, W. (2007), "Multi-phased array for damage localisation", Key Eng. Mater., 347, 77-82.
  20. Mal, A.K. (1988), "Wave propagation in layered composite laminates under periodic surface loads", Wave Motion, 10, 257-266.
  21. Michaels, J.E., Croxford, A.J. and Wilcox, P.D. (2008), "Imaging algorithms for locating damage via in situ ultrasonic sensors", Proceedings of the IEEE Sensor Application Symposium, Atlanta, USA, 63-67.
  22. Michaels, J.E. and Michaels, T.E. (2006), "Enhanced differential methods for guided wave phased array imaging using spatially distributed piezoelectric transducers", Proceedings of the Review of Progress in Quantitative Nondestructive Evaluation, Portland, USA, American Institute of Physics, 837-844.
  23. Moll, J. and Fritzen, C.P. (2010), "Time-varying inverse filtering for high resolution imaging with ultrasonic guided waves", Proceedings of the 10th European Conference on Non-Destructive Testing, Moscow, Russia (on CD-ROM).
  24. Moll, J. and Fritzen, C.P. (2012), "Guided waves for autonomous online identification of structural defects under ambient temperature variations", J. Sound Vib., 331(20), 4587-4597.
  25. Moll, J., Golub, M.,Glushkov, E., Glushkova, N. and Fritzen, C.P. (2012), "Non-axisymmetric lamb wave excitation by piezoelectric wafer active sensors", Sens. Actuat. A. Phys., 174, 173-180.
  26. Moll, J., Heftrich, C. and Fritzen, C.P. (2011), "Time-varying inverse filtering of narrowband ultrasonic signals", Struct. Health Monit., 10(4), 403-415.
  27. Moll, J., Schulte, R.T. Hartmann, B., Fritzen, C.P. and Nelles, O. (2010), "Multi-site damage localization in anisotropic plate-like structures using an active guided wave structural health monitoring system", Smart Mater. Struct., 19(4).
  28. Moll, J. (2011), Strukturdiagnose mit Ultraschallwellen durch Verwendung von piezoelektrischen Sensoren und Aktoren, PhD thesis, University of Siegen, Germany, Schriftenreihe der Arbeitsgruppe fuer Technische Mechanik im Institut fuer Mechanik und Regelungstechnik - Mechatronik, Publisher: Claus-Peter Fritzen, ISSN 2191-5601.
  29. Nayfeh, A.H. (1991), "The general problem of elastic wave propagation in multilayered anisotropic media", J. Acoust. Soc. Am., 89(4),1521-1531.
  30. Nayfeh, A.H. (1995), "Wave propagation in layered anisotropic media with applications to composites", Appl. Math. Mech., 39.
  31. Ng, C.T. and Veidt, M. ( 2009), "A lamb-wave-based technique for damage detection in composite laminates", Smart Mater. Struct., 18(7).
  32. Pavlakovic, B. (1997), "Disperse: a general purpose program for creating dispersion curves", In: Review of Progress in Quantitative Nondestructive Evaluation, 185-192..
  33. Rose, J.L. (1999), Ultrasonic Waves in Solid Media, Cambridge University Press.
  34. Schulte, R.T., Fritzen, C.P. and Moll, J. (2010), "Spectral element modelling of wave propagation in isotropic and anisotropic shell-structures including different types of damage", Mater. Sci. Eng., 10(1).
  35. Schulte, R.T. (2010), Modellierung und simulation von wellenbasierten structural health monitoring-systemen auf basis von spektralelementen, PhD thesis, University of Siegen, Germany, Schriftenreihe der Arbeitsgruppe fuer Technische Mechanik im Institut fuer Mechanik und Regelungstechnik - Mechatronik, Publisher: Claus-Peter Fritzen.
  36. Seydel, R. and Chang, F.K. (2001), "Impact identification of stiffened composite panels i. system development", Smart Mater. Struct., 10(2), 354-369.
  37. Staszewski, W., Boller, C. and Tomlinson, G.R. (2004), Health monitoring of Aerospace structures: smart sensor technologies and signal processing, Wiley.
  38. Su, Z., Wang, X., Cheng, L., Yu, L. and Chen, Z. (2009), "On selection of data fusion schemes for structural damage evaluation", Struct.Health Monit., 8(3), 223-241.
  39. Szabo, J. and Wu, T.L. (2000), "A model for longitudinal and shear wave propagation in viscoelastic media", J. Acoust. Soc. Am., 107(5), 2437-2446.
  40. Tisseur, K. and Meerbergen, F. (2001), "The quadratic eigenvalue problem", SIAM Rev., 43(2), 235-286.
  41. Torres-Arredondo, M.A. and Fritzen, C.P. (2011), "Characterization and classification of modes in acoustic emission based on dispersion features and energy distribution analysis", Proceedings of the ICEDyn ,Tavira, Portugal (on CD-ROM).
  42. Torres-Arredondo, M.A. and Fritzen, C.P. (2011), A viscoelastic plate theory for the fast modelling of lamb wave solutions in ndt/shm applications, In: NDT-E of Composite Materials - CompNDT, Available Online:
  43. Torres-Arredondo, M.A. and Fritzen, C.P. (2012), "Ultrasonic guided wave dispersive characteristics in composite structures under variable temperature and operational conditions", Proceedings of the 6th European Workshop in Structural Health Monitoring, Berlin, Germany.
  44. Tua, P.S. Quek, S.T. and Wang, Q. (2004), "Detection of cracks in plates using piezo-actuated lamb waves", Smart Mater. Struct., 13(4), 643-660.
  45. Vasiliev, E.V. and Morozov, V.V. (2007), Advanced mechanics of composite materials, Elsevier Ltd.
  46. Walters-Williams, J. and Li, Y. (2009), "Estimation of mutual information: a survey", Proceedings of the4th International Conference on Rough Set and Knowledge Technology, Gold Coast, Australia, 389-396.
  47. Wang, Y. and Yuan, F.G. (2007), "Group velocity and characteristic wave curves of lamb waves in composites: Modeling and experiments", Compos. Sci. Technol., 67(7-8), 1370-1384.
  48. Whitney, J.M. and Sun, C.T. (1973), "A higher order theory for extensional motion of laminated composites", J. Sound Vib., 30(1), 85-97.
  49. Yu, L., Giurgiutiu, V. and Pollock, V. (2008), "A multi-mode sensing system for corrosion detection using piezoelectric wafer active sensors", Proceedings of the SPIE (Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems), San Diego, USA, 69322H(1-12).

Cited by

  1. Non-contact damage monitoring technique for FRP laminates using guided waves vol.17, pp.5, 2016,
  2. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics vol.22, pp.10, 2013,
  3. Multiway principal component analysis contributions for structural damage localization 2017,
  4. Towards the Development of Predictive Models for the System Design and Modal Analysis of Acoustic Emission Based Technologies vol.518, pp.1662-9795, 2012,
  5. Core–skin debonding detection in honeycomb sandwich structures through guided wave wavefield analysis pp.1530-8138, 2018,
  6. An acousto-ultrasonics approach for probabilistic modelling and inference based on Gaussian processes vol.25, pp.6, 2018,