P-type Capacitance Observed in Nitrogen-doped ZnO

ZnO에서 질소 불순물에 의한 p-type Capacitance

  • Received : 2011.11.14
  • Accepted : 2012.05.16
  • Published : 2012.06.01


We studied p-type capacitance characteristics of ZnO thin-film transistors (TFT's), grown by metal organic chemical vapor deposition (MOCVD). We compared two ZnO TFT's: one grown at $450^{\circ}C$ and the other grown at $350^{\circ}C$. ZnO grown at $450^{\circ}C$ showed smooth capacitance profile with electron density of $1.5{\times}10^{20}cm^{-3}$. In contrast, ZnO grown at $350^{\circ}C$ showed a capacitance jump when gate voltage was changed to negative voltages. Current-voltage characteristics measured in the two samples did not show much difference. We explain that the capacitance jump is related to p-type ZnO layer formed at the $SiO_2$ interface. Current-voltage and capacitance-voltage data support that p-type characteristics are observed only when background electron density is very low.


ZnO;MOCVD;CV characteristics;TFT;Nitrogen;Display


  1. K. Miyamoto, M. Sano, H. Kato, and T. Yao, "Effects of ZnO/MgO Double Buffer Layers on Structural Quality and Electron Mobility of ZnO Epitaxial Films Grown on c-Plane Sapphire," Jpn J. Appl. Phys. vol. 41, pp. L1203-L1205, 2002.
  2. A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. Chichibu, and M. Kawasaki, "Blue Light-Emitting Diode Based on ZnO," Jpn J. Appl. Phys. vol. 44, L643-L645, 2005.
  3. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, "High Mobility Transparent Thin-Film Transistors with Amorphous Zinc Tin Oxide Channel Layer," Appl. Phys. Lett. vol. 86, p. 13503, 2005.
  4. K. Nomura, H. Ohta, A.Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors," Nature vol. 432, pp. 488-492, 2004.
  5. J. Jo, O. Seo, E. Jeong, H. Seo, E. Jeong, H. Seo, B. Lee, and Y. I. Choi, "Effect of Hydrogen in Zinc Oxide Thin-Film Transistor Grown by Metal Organic Chemical Vapor Deposition," Jpn J. Appl. Phys. vol. 46, 2493-2495, 2007.
  6. J. Jo, O. Seo, H. Choi, and B. Lee, "Enhancement-Mode ZnO Thin-Film Transistor Grown by Metalorganic Chemical Vapor Deposition," Appl. Phys. Express vol. 1, p. 041202, 2008.
  7. S. B. Zhang, S. H. Wei, and A. Zunger, "Intrinsic n-type versus p-type Doping Asymmetry and the Defect Physics of ZnO," Phys. Rev. B vol. 63, p. 075205, 2001.
  8. E. C. Lee, Y. S. Kim, Y. G. Jin, and K. J. Chang, "Compensation Mechanism for N Acceptors in ZnO," Phys. Rev. B vol. 64, p. 085120, 2001.
  9. Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, and D. L. Liu, "Control of Conductivity Type in Undoped ZnO Thin Films Grown by Metalorganic Vapor Phase Epitaxy," J. Appl. Phys. vol. 95, pp. 6268-6271, 2004.
  10. T. V. Butkhuzi, A. V. Bureyev, A. N. Georgobiani, N. P. Kekelidze, and T. G. Khulordava, "Optical and Electrical Properties of Radical Beam Gettering Epitaxy Grown n- and p-type ZnO Single Crystals," J. Cryst. Growth vol. 117, pp. 366-369, 1992.
  11. A. N. Georgobiani, M. B. Kotlyarevskii, V. V. Kidalov, L. S. Lepnev, and I. V. Rogozin, "Luminescence of Native-Defect p-Type ZnO," Inorg. Mater. vol. 37, pp. 1095-1098, 2001.
  12. G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K.B.Ucer, and R.T. Williams, "Control of p- and n-type Conductivity in Sputter Deposition of Undoped ZnO," Appl. Phys. Lett. vol. 80, p. 1195, 2002.


Supported by : National Research Foundation of Korea (NRF)