DOI QR코드

DOI QR Code

TRANSVERSE KILLING FORMS ON A KÄAHLER FOLIATION

Jung, Seoung-Dal;Jung, Min-Joo

  • Received : 2010.03.30
  • Published : 2012.05.31

Abstract

On a closed, connected Riemannian manifold with a K$\ddot{a}$ahler foliation $\mathcal{F}$ of codimension $q$, any transverse Killing $r$-form ($2{\leq}r{\leq}q$) is parallel.

Keywords

transverse Killing form;transverse conformal Killing form;K$\ddot{a}$ahler foliation

References

  1. J. A. Alvarez Lopez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), no. 2, 179-194. https://doi.org/10.1007/BF00130919
  2. S. D. Jung, Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1-form, J. Geom. Phys. 57 (2007), no. 4, 1239-1246. https://doi.org/10.1016/j.geomphys.2006.04.008
  3. M. J. Jung and S. D. Jung, Riemannian foliations admitting transversal conformal fields, Geom. Dedicata 133 (2008), 155-168. https://doi.org/10.1007/s10711-008-9240-6
  4. S. D. Jung, K. R. Lee, and K. Richardson, Generalized Obata theorem and its applications on foliations, J. Math. Anal. Appl. 376 (2011), no. 1, 129-135. https://doi.org/10.1016/j.jmaa.2010.10.022
  5. S. D. Jung and K. Richardson, Transverse conformal Killing forms and a Gallot-Meyer Theorem for foliations, Math. Z. 270 (2012), 337-350. https://doi.org/10.1007/s00209-010-0800-8
  6. F. W. Kamber and Ph. Tondeur, Harmonic foliations, Proc. National Science Foundation Conference on Harmonic Maps, 87-121, Tulance, Dec. 1980, Lecture Notes in Math. 949, Springer-Verlag, New York, 1982.
  7. F. W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J. 34 (1982), no. 2, 525-538. https://doi.org/10.2748/tmj/1178229154
  8. F. W. Kamber and Ph. Tondeur, De Rham-Hodge theory for Riemannian foliations, Math. Ann. 277 (1987), no. 3, 415-431. https://doi.org/10.1007/BF01458323
  9. T. Kashiwada and S. Tachibana, On the integrability of Killing-Yano's equation, J. Math. Soc. Japan 21 (1969), 259-265. https://doi.org/10.2969/jmsj/02120259
  10. M. Min-Oo, E. A. Ruh, and Ph. Tondeur, Vanishing theorems for the basic cohomology of Riemannian foliations, J. Reine Angew. Math. 415 (1991), 167-174.
  11. A. Moroianu and U. Semmelmann, Twistor forms on Kahler manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 4, 823-845.
  12. S. Nishikawa, Ph. Tondeur, Transversal infinitesimal automorphisms for harmonic Kahler foliations, Tohoku Math. J. 40 (1988), no. 4, 599-611. https://doi.org/10.2748/tmj/1178227924
  13. J. S. Pak and S. Yorozu, Transverse fields on foliated Riemannian manifolds, J. Korean Math. Soc. 25 (1988), no. 1, 83-92.
  14. E. Park and K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118 (1996), no. 6, 1249-1275. https://doi.org/10.1353/ajm.1996.0053
  15. U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003), no. 3, 503-527. https://doi.org/10.1007/s00209-003-0549-4
  16. S. Tachibana, On conformal Killing tensor in a Riemannian space, Tohoku Math. J. 21 (1969), 56-64. https://doi.org/10.2748/tmj/1178243034
  17. S. Tachibana, On Killing tensors in Riemannian manifolds of positive curvature operator, Tohoku Math. J. 28 (1976), 177-184. https://doi.org/10.2748/tmj/1178240832
  18. Ph. Tondeur, Foliations on Riemannian Manifolds, Springer-Verlag, New-York, 1988.
  19. Ph. Tondeur, Geometry of Foliations, Birkhauser-Verlag, Basel; Boston; Berlin, 1997.
  20. K. Yano, Some remarks on tensor fields and curvature, Ann. of Math. 55 (1952), 328- 347. https://doi.org/10.2307/1969782

Cited by

  1. TRANSVERSE KILLING FORMS ON COMPLETE FOLIATED RIEMANNIAN MANIFOLDS vol.36, pp.4, 2014, https://doi.org/10.5831/HMJ.2014.36.4.731
  2. Transverse conformal Killing forms on Kähler foliations vol.90, 2015, https://doi.org/10.1016/j.geomphys.2015.01.004
  3. $$L^\mathrm{2}$$ L 2 -transverse conformal Killing forms on complete foliated manifolds 2017, https://doi.org/10.1007/s00209-017-1905-0

Acknowledgement

Supported by : Jeju National University