DOI QR코드

DOI QR Code

AN EXTENDED SPACE $\hat{D}$L(S) ASSOCIATED WITH $\mathcal{H}$L(S)

  • Yang, Mee-Hyea
  • Received : 2010.11.03
  • Published : 2012.05.31

Abstract

Let $S$ be a upper triangular operator such that $M^L_S:\mathcal{U}_2{\rightarrow}\mathcal{U}_2$ defined by $M^L_S(F)=SF$ is a contraction. Then there exists an unitary linear system whose state space is the extension space $\tilde{D}_L$(S) associated with $\mathcal{H}_L$(S).

Keywords

reproducing kernel;unitary linear system

References

  1. D. Alpay, The Schur algorithm, reproducing kernel spaces and system theory, SMF/AMS texts and monographs 5, 2001.
  2. D. Alpay, P. Dewilde, and H. Dym, Lossless inverse scattering and reproducing kernels for upper triangular operators, Extension and interpolation of linear operators and matrix functions, 61-135, Oper. Theory Adv. Appl., 47, Birkhauser Verlag, Basel, 1990.
  3. D. Alpay and Y. Peretz, Special realizations for Schur upper triangular operators, Contributions to operator theory in spaces with an indefinite metric (Vienna, 1995), 37-90, Oper. Theory Adv. Appl., 106, Birkhauser, Basel, 1998. Birkhauser Verlag, Basel, 1998.
  4. L. de Branges, Krein spaces of analytic functions, J. Funct. Analysis 181 (1988), no. 2, 219-259.
  5. L. de Branges, Complementation in Krein spaces, Trans. Amer. Math. Soc. 305 (1988), no. 1, 277-291.
  6. L. de Branges and J. Rovnyak, Canonical models in quantum scattering theory, Perturbation Theory and its Applications in Quantum Mechanics (Proc. Adv. Sem. Math. Res. Center, U.S. Army, Theoret. Chem. Inst., Univ. of Wisconsin, Madison, Wis., 1965) pp. 295-392 Wiley, New York, 1966.

Acknowledgement

Supported by : University of Incheon