Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics

액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성

  • Koo, Hye Young (Powder Technology Department, Korea Institute of Materials Science) ;
  • Yun, Jung-Yeul (Powder Technology Department, Korea Institute of Materials Science) ;
  • Yang, Sangsun (Powder Technology Department, Korea Institute of Materials Science) ;
  • Lee, Hye-Moon (Powder Technology Department, Korea Institute of Materials Science)
  • 구혜영 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 윤중열 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 양상선 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 이혜문 (한국기계연구원 부설 재료연구소 분말기술연구실)
  • Published : 2012.06.30


The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.


  1. Azarkevich, E. I., Il'in, A. P., Tikhonov, D. V., and Yablunovskii, G. V. (1997). Synthesis of ultradispersed powders of alloys and intermetallic compounds by electrical explosion of wires, Fizika i himia obrabotki materialov, 4, 85-88.
  2. Banhart, J. (2006). Metal foams: production and stability, Advanced Engineering Materials 8, 781-794.
  3. Dawody, J., Skoglundh, M., Wall, S., and Fridell, E. (2005). Role of Pt-precursor on the performance of $Pt/BaCO_3/Al_2O_3{\cdot}NOx$ storage catalysts, Journal of Molecular Catalysis A: Chemical, 225, 259-269.
  4. Hiramatsu, H., and Osterloh, F. E. (2004). A Simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants, Chemistry of Materials, 16, 2509-2511.
  5. Houriet, R., Vacassy, R., Hofmann, H., and Vogel, W. (1998). Thin Film Growth Using Ablation of Ceramics with a Lina-Spark Atomizer, Materials Research Society Symposium Proceedings, 526, 117-122.
  6. Ichikawa, S., Harada, T., and Hamanaka, T. (2003). Development of honeycomb ceramics for diesel particulate filters (DPF), Ceramics, 38, 296-300
  7. Jung, Y. H., Kim, J. S., Kwon, Y. S., Kim, J. S., and Rim, G. H. (2002). Pulsed-energy wire electric explosion technology for production of nanoscale powder, Journal of Korean Powder Metallurgy Institute, 9,73-82.
  8. Kotov, Y. A. (2009). The electrical explosion of wire: A method for the synthesis of weakly aggregated nanopowders, Nanotechnologies in Russia, 4, 415-424.
  9. Miyakawa, N., Maeno, H., and Takahashi, H. (2003). Characteristics and evaluation of porous silicon nitride DPF, SAE world congress, Detroit, MI..
  10. Ohno, K., Shimato, K., Taoka, N., Santae, H., Ninomiya, T. and Komori, T. (2000). Characterization of SiC DPF for passenger car, SAE world congress, Detroit, MI.
  11. Yun, J. Y., Lee, H. M., Choi, S. Y., Yang, S., Lee, D. W., Kim, Y. J., and Kim, B. K. (2011). Characteristics of Fe-Cr-Al alloy nanopowders prepared by electrical wire explosion process under liquid media, Materials Transactions, 52, 250-253.