DOI QR코드

DOI QR Code

Synthesis, Structure Investigation and Dyeing Assessment of Novel Bisazo Disperse Dyes Derived from 3-(2'-Hydroxyphenyl)-1-phenyl-2-pyrazolin-5-ones

  • Metwally, M.A. ;
  • Bondock, S. ;
  • El-Desouky, S.I. ;
  • Abdou, M.M.
  • Received : 2012.02.14
  • Accepted : 2012.05.07
  • Published : 2012.06.20

Abstract

In an attempt to find a new class of bisazo disperse dyes with better dyeing properties, a series of novel bisazo dyestuffs based on 4-arylhydrazono-3-(2'-hydroxyphenyl)-1-phenyl-2-pyrazolin-5-ones $\mathbf{3a-f}$ were prepared by diazocoupling of p-nitrophenyl diazonium chloride with 4-arylhydrazono-3-(2'-hydroxyphenyl)-1-phenyl-2-pyrazolin-5-ones $\mathbf{2a-f}$. Compounds $\mathbf{3a-f}$ were subsequently reacted with acetic anhydride in the presence of p-toluenesulfonic acid afford the corresponding O-acetyl derivatives $\mathbf{4a-f}$. The latter products as well as spectral data indicated that compounds $\mathbf{3a-f}$ exist predominantly in the azo-hydrazone tautomeric form (H) as the ZE-configuration. Additionally, two series of the synthesized dyes $\mathbf{3a-f}$ and $\mathbf{4a-f}$ were applied as disperse dyes for dyeing polyester fabrics and their fastness properties were evaluated. Also the position of color in CIELAB coordinates ($L^*$, $a^*$, $b^*$, $H^*$, $C^*$*) was assessed.

Keywords

Bisazo pyrazolin-5-ones;Azo-hydrazone tautomerism;Fastness properties;CIELAB coordinates

References

  1. Annen, O.; Egli, R.; Hasler, R.; Henzi, B.; Jakob, H.; Matzinger, P. Rev. Prog. Coloration 1987, 17, 72.
  2. Metwally, M. A.; Bondock; S.; El-Desouky; S. I.; Abdou; M. M. Int. J. Modern Org. Chem. 2012, 1, 19.
  3. Karci, F.; Ertan, N. Dyes Pigm. 2002, 55, 99. https://doi.org/10.1016/S0143-7208(02)00102-X
  4. Ho, Y. W. Dyes Pigm. 2005, 64, 223. https://doi.org/10.1016/j.dyepig.2004.06.007
  5. Ozdemir, A.; Turan-Zitouni, G.; AslmKaplanclkll, Z.; Revial, G.; Demirci, F.; Iscan, G. J Enzyme Inhib. Med. Chem. 2010, 25, 565. https://doi.org/10.3109/14756360903373368
  6. Kucukguzel, S. G.; Rollas, S. Farmaco 2002, 57, 583. https://doi.org/10.1016/S0014-827X(02)01253-3
  7. Kucukguzel, S. G.; Rollas, S.; Erdeniz, H.; Kiraz, M.; Cevdet Ekinci, A.; Vidin, A. Eur. J. Med. Chem. 2000, 35, 761. https://doi.org/10.1016/S0223-5234(00)90179-X
  8. Minkin, V. I.; Garnovskii, A. D.; Elguero, J.; Katritzky, A. R.; Denisko, O. V. Adv. Heterocycl. Chem. 2000, 76, 157. https://doi.org/10.1016/S0065-2725(00)76005-3
  9. Whitaker, A. Acta crystallogr. 1988, C44, 1767.
  10. Whitaker, A. Acta crystallogr. 1988, C44, 1587.
  11. Connor, J. A.; Kennedy, R. J.; Dawies, H. M.; Hursthouse, M. B.; Walker, N. P. C. J. Chem. Soc., Perkin Trans. 1990, 2, 203.
  12. Whitaker, A. J. Soc. Dyers Colour 1995, 11, 66.
  13. Emeleus, L. C.; Cupertino, D. C.; Harris, S. G.; Owens, S.; Parsons, S.; Swart, R. W.; Tasker, P. A.; White, D. J. J. Chem. Soc., Dalton Trans. 2001, 2, 1239.
  14. Sawicki, E. J. Org. Chem. 1957, 22, 915. https://doi.org/10.1021/jo01359a016
  15. Sawicki, E. J. Org. Chem. 1957, 22, 1084. https://doi.org/10.1021/jo01360a024
  16. Lycka, A.; Machacek, V. Dyes Pigm. 1986, 7, 171. https://doi.org/10.1016/0143-7208(86)85008-2
  17. Ueno, K. J. Am. Chem. Soc. 1957, 79, 3205. https://doi.org/10.1021/ja01569a057
  18. Burawoy, A.; Thompson, A. R. J. Chem. Soc. 1953, 1443. https://doi.org/10.1039/jr9530001443
  19. Hadzi, D. J. Chem. Soc. 1956, 2143. https://doi.org/10.1039/jr9560002143
  20. Ospenson, J. Acta Chem. Scand. 1951, 5, 491. https://doi.org/10.3891/acta.chem.scand.05-0491
  21. Metwally, M. A.; Bondock, S.; El-Desouky, S. I.; Abdou, M. M. J. Korean Chem. Soc. 2012, 56, 82. https://doi.org/10.5012/jkcs.2012.56.1.082
  22. Metwally, M. A.; Bondock, S.; El-Desouky, S. I.; Abdou, M. M. Dyes Pigm. 2012 (submitted).
  23. Perrin, D. D.; Armarego, W. L. F.; Parris, D. R. Purification of laboratory chemicals, 2nd ed.; Pergamon: New York, 1980.
  24. Shawali, A. S.; Harb, N. M. S.; Badahdah, K. O. J. Heterocycl. Chem. 1985, 22, 1397. https://doi.org/10.1002/jhet.5570220555
  25. Anonymous. Standard methods for the determination of the color fastness of textiles and leather, 5th ed.; The Society of Dyers and Colorists: Bradford, England, 1990; p 619.
  26. Yasuda, H.; Nidokawa, H. J. Org. Chem. 1966, 31, 1722. https://doi.org/10.1021/jo01344a014
  27. Jones, R.; Ryan, A. J.; Sternhell, S.; Wright, S. E. Tetrahedron 1963, 19, 1497. https://doi.org/10.1016/S0040-4020(01)99223-3
  28. Geissman, T. A.; Armen, A. J. Am. Chem. Soc. 1955, 77, 1623. https://doi.org/10.1021/ja01611a065
  29. Russell, P. E. J. Am. Chem. Soc. 1953, 75, 5315. https://doi.org/10.1021/ja01117a051
  30. Randall, H. M.; Fuson, N.; Fowler, R. G.; Dangl, J. R. Infrared determination of organic compounds; D. Van Nostrand, Co., Inc.: New York, 1949; p 222.
  31. Gagnon, P. E.; Boivin, J. L.; MacDonald, B. R.; Yaffe, L. Can. J. Chem. 1954, 32, 823. https://doi.org/10.1139/v54-105
  32. Colthup, N. B. J. Opt. Soc. Am. A. 1950, 40, 397. https://doi.org/10.1364/JOSA.40.000397
  33. Bellamy, L. J. Adv. Infrared group frequencies; Methuen: London, 1968; p 52.
  34. Yasuda, H. Bull. Chem. Soc. Jap. 1967, 40, 1239. https://doi.org/10.1246/bcsj.40.1239
  35. Oakes, J.; Gratton, P. J. Chem. Soc., Perkin Trans. 1998, 2, 1857.
  36. Brode, W.; Herdle, L. J. Org. Chem. 1941, 6, 713. https://doi.org/10.1021/jo01205a007
  37. Lestina, G. J.; Regan, T. H. J. Org. Chem. 1969, 34, 1685. https://doi.org/10.1021/jo01258a033
  38. Yoder, C. H.; Barth, R. C.; Richter, W. M.; Snavely, F. A. J. Org. Chem. 1972, 37, 4121. https://doi.org/10.1021/jo00798a034
  39. Snavely, F. A.; Yoder, C. H. J. Org. Chem. 1968, 33, 513. https://doi.org/10.1021/jo01266a007
  40. Chakravorty, A.; Ktlia, K. C. J. Org. Chem. 1970, 35, 2231. https://doi.org/10.1021/jo00832a027
  41. Bellamy, L. J. The infrared spectra of complex molecules; Chapman and Hall: London, 1975; p 303.
  42. SDL. Atlas Ltd. P.O. Box 162, Crown Royal, Shawcross St., Stockport SK1 3JW.
  43. Gordon, P. F.; Gregory, P. Organic Chemistry in Color; Springer-Verlag: Berlin, 1983; p 289.

Cited by

  1. Advancements in tetronic acid chemistry. Part 1: Synthesis and reactions 2015, https://doi.org/10.1016/j.arabjc.2015.11.004
  2. Recent advances in 4-hydroxycoumarin chemistry. Part 2: Scaffolds for heterocycle molecular diversity 2015, https://doi.org/10.1016/j.arabjc.2015.06.029
  3. Advancements in tetronic acid chemistry. Part 2: Use as a simple precursor to privileged heterocyclic motifs vol.20, pp.4, 2016, https://doi.org/10.1007/s11030-016-9683-x
  4. Recent advances in 4-hydroxycoumarin chemistry. Part 1: Synthesis and reactions 2015, https://doi.org/10.1016/j.arabjc.2015.06.012
  5. Stability of Dye Dispersions in the Presence of Some Eco-Friendly Dispersing Agents vol.16, pp.6, 2013, https://doi.org/10.1007/s11743-013-1493-x
  6. Synthesis, Spectral Property and Dyeing Assessment of Azo Disperse Dyes Containing Carbonyl and Dicyanovinyl Groups vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.863
  7. A facile synthesis and tautomeric structure of novel 4-arylhydrazono-3-(2-hydroxyphenyl)-2-pyrazolin-5-ones and their application as disperse dyes vol.129, pp.6, 2013, https://doi.org/10.1111/cote.12052
  8. Synthesis and chemical transformations of 3-acetyl-4-hydroxyquinolin-2(1H)-one and its N-substituted derivatives: bird’s eye view vol.45, pp.3, 2019, https://doi.org/10.1007/s11164-018-3652-1