DOI QR코드

DOI QR Code

PYTHAGOREAN-HODOGRAPH CUBICS AND GEOMETRIC HERMITE INTERPOLATION

Lee, Hyun-Chol;Lee, Sun-Hong

  • Received : 2011.02.10
  • Accepted : 2011.10.24
  • Published : 2012.01.31

Abstract

In this paper, we present the geometric Hermite interpolation for planar Pythagorean-hodograph cubics for some general Hermite data.

Keywords

Pythagorean-hodograph curves;Pythagorean-hodograph cubics;geometric Hermite interpolation

References

  1. D. Marsh, Applied Geometry for Computer Graphics and CAD, Springer, 2005, 135-160
  2. R. T. Farouki, Pythagorean-hodograph curves in practical use, Geometry processing for design and manufacturing, R. E. Barnhill (ED.), Philadelphia: SIAM: 1992, 3-33
  3. R. T. Farouki, The conformal map $z{\rightarrow}z^2$ of the hodograph plane, Computer Aided Geometric Design 11 (1994), 363-390 https://doi.org/10.1016/0167-8396(94)90204-6
  4. R. T. Farouki, The elastic bending energy of Pythagorean curves, Computer Aided Geometric Design 13 (1996), 227-241 https://doi.org/10.1016/0167-8396(95)00024-0
  5. R. T. Farouki, Pythagorean-hodograph quintic transition curves of nonotone curvature, Computer-Aided Design 29 (1997), 606-610
  6. R. T. Farouki, J. Manjunathaiah, D. Nichlas, G. F. Yuan, and S. Jee, Variable-feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves, Computer-Aided Design 30 (1998), 631-640 https://doi.org/10.1016/S0010-4485(98)00020-7
  7. R. T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM Journal of Research and Development 34 (1990), 726-752
  8. J. Kosinka, and B. Juttler, $G^1$ Hermite interpolation by Minkowski Pythagorean hodograph cubics, Computer Aided Geometric Design 23 (2006), 401-418 https://doi.org/10.1016/j.cagd.2006.01.004
  9. D. S. Meek and D. J. Walton, Geometric Hermite interpolation with Tschirnhausen cubic, Journal of Computational and Applied Mathematics 81 (1997), 299-309 https://doi.org/10.1016/S0377-0427(97)00066-6
  10. F. Pelosi, R. T. Farouki, C. Mannai, and A. Sestini, Geometric Hermite interpolation by spatial Pythagorean hodograph cubics, Carla Manni and Alessandra Sestini Advances in Computataional Mathematiec 22 (2005), 325-352
  11. D. J. Walton and D. S. Meek, A Pythagorean hodograph quintic spiral, Computer Aided Geometric Design 28 (1996), 643-650