DOI QR코드

DOI QR Code

ON THE MULTI-DIMENSIONAL PARTITIONS OF SMALL INTEGERS

Kim, Jun-Kyo

  • Received : 2011.05.03
  • Accepted : 2011.12.16
  • Published : 2012.01.31

Abstract

For each dimension exceeds 1, determining the number of multi-dimensional partitions of a positive integer is an open question in combinatorial number theory. For n ${\leq}$ 14 and d ${\geq}$ 1 we derive a formula for the function ${\wp}_d(n)$ where ${\wp}_d(n)$ denotes the number of partitions of n arranged on a d-dimensional space. We also give an another definition of the d-dimensional partitions using the union of finite number of divisor sets of integers.

Keywords

partitions of integers;multidimensional partition;combinatorial number theory;additive number theory

References

  1. G. E. Andrews, The Theory of Partitions, Reading, Massachusetts: Addison-Wesley Publishing Company, 1976.
  2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers 4th edn Oxford: Clarendon, 1960.
  3. L. Euler, De partitione numerorum, Novi Commentarii Academiae scientiarum Petropolitanae, 3 (1753), 125-169.
  4. F. Wang and D. P. Landau, Multiple-range random walk algorithm to calculate the density of states, Physical Review Letters - PHYS REV LETT, 86, no 10 (2001), 2050-2053. https://doi.org/10.1103/PhysRevLett.86.2050
  5. A. O. L. Atkin, P. Bratley and I. G. Macdonald, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc. 63(4) (1967), 1097-1100.
  6. W. Fulton, Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts 35 (1997), Cambridge University Press, Cambridge.
  7. A. Yong, What is... a Young tableau?, Notices Amer. Math. Soc. 54 (2007), 240-241.

Acknowledgement

Supported by : Pusan National University