DOI QR코드

DOI QR Code

Determination of Mercury in Fly Ash by Using Flow Injection Cold Vapor Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

  • Suh, Jung-Ki (Division of Metrology for Quality of Life, Analytical Chemistry Laboratory (KRISS)) ;
  • Min, Hyung-Sik (Division of Metrology for Quality of Life, Analytical Chemistry Laboratory (KRISS)) ;
  • Kamruzzaman, Mohammad (Department of Chemistry, Kyungpook National University) ;
  • Lee, Sang-Hak (Department of Chemistry, Kyungpook National University)
  • Received : 2012.02.17
  • Accepted : 2012.06.18
  • Published : 2012.06.28

Abstract

A method based on flow injection-isotope dilution-cold vapor-inductively coupled plasma mass spectrometry (FI-IDCV-ICP/MS) has been applied to determine trace level of mercury in fly ash. $^{200}Hg$ isotopic spike was added to 0.25 g of BCR176R fly ash and then decomposed by microwave digestion procedure with acid mixture A (8 mL $HNO_3$ + 2 mL HCl + 2 mL HF) and acid mixture B (8 mL $HNO_3$ + 2 mL $HClO_4$ + 2 mL HF) for applying IDMS. Mercury cold vapor was generated by using reductant solution of 0.2% (w/w) $NaBH_4$ and 0.05% (w/w) NaOH. The measurements of n($^{200}Hg$)/n($^{202}Hg$) isotope ratio was made using a quadrupole ICP/MS system. The accuracy in this method was verified by the analysis of certified reference material (CRM) of fly ash (BCR 176R). The indicative value of Hg in BCR 176R fly ash was $1.60{\pm}0.23$ mg/kg (k = 2). The determined values of Hg in BCR 176R fly ash by the method of FI-CV-ID-ICP/MS described in this paper were $1.60{\pm}0.24$ mg/kg (k = 3.18) and the analysis results were in well agreement with the indicative value within the range of uncertainty.

References

  1. Mann, J. L.; Long, S. E.; Kelly, W. R. J. Anal. At. Spectrom. 2003, 18, 1293. https://doi.org/10.1039/b306640a
  2. Costley, C. T.; Mossop, K. F.; Dean, J. R.; Gargen, L. M.; Marshall, J.; Carroll, J. Anal. Chim. Acta 2000, 405, 179. https://doi.org/10.1016/S0003-2670(99)00742-4
  3. Armstrong, H. L.; Corns, W. T.; Stockwell, P. B.; O'Connor, G.; Ebdon, L.; Evans, E.H. Anal. Chim. Acta 1999, 390, 245. https://doi.org/10.1016/S0003-2670(99)00228-7
  4. Allibone, J.; Fatemian, E.; Walker, P. J. J. Anal. Atom. Spectrom. 1999, 14, 235. https://doi.org/10.1039/a806193i
  5. Milton, M. J. T.; Quinn, T. J. Metrologia 2001, 38 , 289. https://doi.org/10.1088/0026-1394/38/4/1
  6. Jian, L.; Goessler, W.; Irgolic, K. J. Fresenius' J. Anal. Chem. 2000, 366, 48. https://doi.org/10.1007/s002160050010
  7. Karunasagar, D.; Arunachalam, J.; Gangadharan, S. J. Anal. Atom. Spectrom. 1998, 13, 679. https://doi.org/10.1039/a802132e
  8. Chen, S. F.; Jiang, S. J. J. Anal. Atom. Spectrom. 1998, 13, 673. https://doi.org/10.1039/a800156a
  9. Liao, H. C.; Jiang, S. J. J. Anal. Atom. Spectrom. 1999, 14, 1583. https://doi.org/10.1039/a905328j
  10. Long, S. E.; Kelly, W. R. Anal. Chem. 2002, 74, 1477. https://doi.org/10.1021/ac010954n
  11. Willie, S. Am. Lab. 2002, 34, 40.
  12. Mester, M.; Angelone, M.; Brunori, C.; Cremisini, C.; Muntau, H.; Moraboto, R. Analytica Chimica Acta 1999, 395, 157. https://doi.org/10.1016/S0003-2670(99)00342-6
  13. Woller, A.; Garraund, H.; Martin, A.; Donard, O. F. X.; Fodor, P. J. Anal. Atom. Spectrom. 1997, 12, 53. https://doi.org/10.1039/a606044g
  14. De Bievre, P. J. Fresenius Anal. Chem. 1994, 350, 277. https://doi.org/10.1007/BF00322482
  15. Guide to the expression of uncertainty in measurement: SBN 92-67-10188-9, 1st ed. ISO, Geneva, Switzerland, 1993.
  16. Tayor, B. N.; Kuyatt, C. E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST technical note 1297, U. S. Government Printing Office: Washington DC, 1994.
  17. EURACHEM Guide: The fitness for purpose of analytical methods. A laboratory guide to method validation and related topics, 1st ed. Eurachem: 1998.
  18. Taylor H. E. (eds.) Inductively coupled plasma mass spectrometry: Practice and techniques, Academic Press, 2001.