DOI QR코드

DOI QR Code

IMPLICATIVE VAGUE IDEALS IN BCK-ALGEBRAS

  • Ahn, Sun-Shin (Department of Mathematics Education, Dongguk University) ;
  • Ko, Jung-Mi (Department of Mathematics, Gangneung-Wonju National University)
  • Received : 2011.10.26
  • Accepted : 2012.03.26
  • Published : 2012.06.25

Abstract

The notion of implicative vague ideals of BCK-algebras is defined, and several properties of it are investigated. Relations between a vague ideal and an implicative vague ideal is discussed. Characterizations of an implicative vague ideal are considered.

References

  1. S. S. Ahn, Y. U. Cho and C. H. Park, Vague quick ideals of BCK/BCI-algebras, Honam Math. J., 30(2008), 65-74. https://doi.org/10.5831/HMJ.2008.30.1.065
  2. R. Biswas, Vague groups, Internat. J. Comput. Cognition, 4(2006), no. 2, 20-23.
  3. W. L. Gau and D. J. Buehrer, Vague sets, IEEE Transactions on Systems, Man and Cybernetics, 23(1993), 610-614. https://doi.org/10.1109/21.229476
  4. Y. B. Jun and C. H. Park, Vague ideals of subtraction algebras, Int. Math. Forum, 2(2007), no.59, 2919-2926.
  5. Y. B. Jun and K. J. Lee, Positive implicative vague ideal in BCK-algebras, Annals of Fuzzy Mathematics and Informatics, 1(2011), 1-9.
  6. K. J. Lee, K. S. So and K. S. Bang, Vague BCK/BCI-algebras, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 15(2008), 297-308.
  7. J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.
  8. C. H. Park, Vague deductive systems of subtraction algebras, J. Appl. Math. Comput., 26(2008), 427-436.
  9. L. A. Zadeh, Fuzzy sets, Inform. Control, 8(1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X