DOI QR코드

DOI QR Code

RICCI AND SCALAR CURVATURES ON SU(3)

  • Kim, Hyun-Woong (Department of Applied Mathematics, Pukyong National University) ;
  • Pyo, Yong-Soo (Department of Applied Mathematics, Pukyong National University) ;
  • Shin, Hyun-Ju (Department of Applied Mathematics, Pukyong National University)
  • Received : 2012.03.16
  • Accepted : 2012.04.03
  • Published : 2012.06.25

Abstract

In this paper, we obtain the Ricci curvature and the scalar curvature on SU(3) with some left invariant Riemannian metric. And then we get a necessary and sufficient condition for the scalar curvature (resp. the Ricci curvature) on the Riemannian manifold SU(3) to be positive.

References

  1. S. Aloff and N. R. Wallach, An infinite family of distinct 7-manifolds admitting positively Riemannian metrics, Bull. Amer. Math. Soc. 81 (1975), 93-97. https://doi.org/10.1090/S0002-9904-1975-13649-4
  2. A. L. Besse, Einstein Manifolds, Springer Verlag (1987).
  3. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, 1963
  4. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 2, 1969, John Wiley and Sons, New York.
  5. M. Kreck and S. Stolz, Some nondiffeomorphic homogeneous 7-manifolds with positive sectional curvature, J. Differential Geom. 33 (1991), 465-486. https://doi.org/10.4310/jdg/1214446327
  6. K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65. https://doi.org/10.2307/2372398
  7. J.-S. Park, Stability of the identity map of SU(3)=T (k, l), Tokyo J. Math. 17(2) (1994), 281-289. https://doi.org/10.3836/tjm/1270127952
  8. J.-S. Park, Curvatures on SU(3)=T (k, l), to appear in Kyushu J. Math., 2012.
  9. J.-S. Park, Y.-S. Pyo and Y.-L. Shin, Weyl structures on compact connected Lie groups, J. Chungcheong Math. Soc. 24(3) (2011), 503-515.
  10. Y.-S. Pyo, Y.-L. Shin and J.-S. Park, Yang-Mills connections on Closed Lie groups, Honam Math. J. 32(4) (2010), 651-661. https://doi.org/10.5831/HMJ.2010.32.4.651
  11. H. Urakawa, Numerical computation of the spectra of the Laplacian on 7- dimensional homogeneous manifolds $SU(3)=T_{k,l}$, SIAM J. Math. Anal. 15 (1984), 979-987. https://doi.org/10.1137/0515074
  12. H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold, Compositio Math. 59 (1986), 57-71.
  13. N. Wallach, Harmonic Analysis on Homogeneous Spaces, Dekker, New York, 1973.
  14. M. Y. Wang, Some examples of homogeneous Einstein manifolds in dimension seven, Duke Math. J. 49 (1982), 23-28. https://doi.org/10.1215/S0012-7094-82-04902-X

Cited by

  1. HARMONIC HOMOMORPHISMS BETWEEN TWO LIE GROUPS vol.38, pp.1, 2016, https://doi.org/10.5831/HMJ.2016.38.1.1