DOI QR코드

DOI QR Code

A NOTE ON AXIOMATIC FEYNMAN OPERATIONAL CALCULUS

Park, Yeon-Hee

  • Received : 2012.05.07
  • Accepted : 2012.05.29
  • Published : 2012.06.25

Abstract

In this note we prove the space (A, ${\parallel}.{\parallel}$) is a Banach space and ${\parallel}ab{\parallel}{\leq}{\parallel}a{\parallel}{\parallel}b{\parallel}$ for $a,b{\in}A$ where $A:=\{a:=(a_t)_{t{\in}G}:{\sum}_{t{\in}G}{\parallel}a_t{\parallel}_t<{\infty}\}$, $G=\mathbb{N}^*$. Also we show some property in (A, ${\parallel}.{\parallel}$).

Keywords

Disentangle algebra;Banach algebra

References

  1. Johnson, G.W. and Lapidus, M.L., Generalized Dyson series, generalized Feynman diagram, the Feynman integral and Feynman's operational calculus, Memoirs Amer. Math. Soc. 62, No. 351,1986, 1-78.
  2. Johnson, G.W. and Lapidus, M.L., Noncommutativ operations on Wiener functionals and Feynman's operational calculus, J. Functional Anal. 81, 1988, 74-99. https://doi.org/10.1016/0022-1236(88)90113-9
  3. Lapidus, M.L., Quentification, calcul operationnel de Feynman axiomatique et integrale fonctionnelle generalisee, C.R. Acad.Sci. Paris, t. 308, Serie I, p. 133- 138, 1989.
  4. Johnson, G.W. and Lapidus, M.L., The Feynman Integral and Feynman's operational calculus, OXFORD university Press, 2000.