DOI QR코드

DOI QR Code

In vitro-growth and Gene Expression of Porcine Preantral Follicles Retrieved by Different Protocols

  • Ahn, J.I. (WCU Biomodulation Program, Seoul National University) ;
  • Lee, S.T. (Department of Animal Biotechnology, Kangwon National University) ;
  • Park, J.H. (WCU Biomodulation Program, Seoul National University) ;
  • Kim, J.Y. (School of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Park, J.H. (WCU Biomodulation Program, Seoul National University) ;
  • Choi, J.K. (WCU Biomodulation Program, Seoul National University) ;
  • Lee, G. (School of Dentistry, Seoul National University) ;
  • Lee, E.S. (School of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Lim, J.M. (WCU Biomodulation Program, Seoul National University)
  • Received : 2010.10.04
  • Accepted : 2011.07.26
  • Published : 2012.07.01

Abstract

This study was conducted to determine how the isolation method of the porcine preantral follicles influenced the following follicular growth in vitro. Mechanical and enzymatical isolations were used for retrieving the follicles from prepubertal porcine ovaries, and in vitro-growth of the follicles and the expression of folliculogenesis-related genes were subsequently monitored. The enzymatic retrieval with collagenase treatment returned more follicles than the mechanical retrieval, while the percentage of morphologically normal follicles was higher with mechanical retrieval than with enzymatic retrieval. After 4 days of culture, mechanically retrieved, preantral follicles yielded more follicles with normal morphology than enzymatically retrieved follicles, which resulted in improved follicular growth. The mRNA expression of FSHR, LHR Cx43, DNMT1 and FGFR2 genes was significantly higher after culture of the follicles retrieved mechanically. These results suggest that mechanical isolation is a better method of isolating porcine preantral follicles that will develop into competent oocytes in in vitro culture.

Keywords

Porcine;Preantral Follicle;Enzymatic Retrieval;Mechanical Retrieval;In vitro Culture;Follicular Growth

Acknowledgement

Supported by : Animal, Plant & Fisheries Quarantine and Inspection Agency (QIA), Ministry of Food, Agriculture, Forestry, and Fisheries

References

  1. Carrell, D. T., L. Liu, I. Huang and C. M. Peterson. 2005. Comparison of maturation, meiotic competence, and chromosome aneuploidy of oocytes derived from protocols for in vitro culture of mouse secondary follicles. J. Assist. Reprod. Genet. 9-10:347-534.
  2. Cozzi, E., E. Basio, M. Seveso, D. Rubello and E. Ancona. 2009. Xenotransplantation as a model of integrated, multidisciplinary research. Organogenesis 5:288-296.
  3. Demeestere, I., A. Delbaere, C. Gervy, M. Van Den Bergh, F. Devreker and Y. Englert. 2002 Effect of preantral follicle isolation technique on in-vitro follicular growth, oocyte maturation and embryo development in mice. Hum. Reprod. 17:2152-2159. https://doi.org/10.1093/humrep/17.8.2152
  4. Eppig, J. J., M. O'Brien and K. Wigglesworth. 1996. Mammalian oocyte growth and development in vitro. Mol. Reprod. Dev.44:260-273. https://doi.org/10.1002/(SICI)1098-2795(199606)44:2<260::AID-MRD17>3.0.CO;2-6
  5. Gougeon, A. 1996. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr. Rev. 17:121-155. https://doi.org/10.1210/edrv-17-2-121
  6. Hammer, C. 1998. Physiological obstacles after xenotransplantation. Ann. NY Acad. Sci. 862:19-27. https://doi.org/10.1111/j.1749-6632.1998.tb09113.x
  7. Iverson, W. O. and T. Talbot. 1998. Definition of production specification for xenotransplantation. Ann. NY Acad. Sci. 862: 121-124. https://doi.org/10.1111/j.1749-6632.1998.tb09124.x
  8. Lee, S. T., M. H. Choi, E. J. Lee, S. P. Gong, M. Jang, S. H. Park, H. Jee, D. Y. Kim, J. Y. Han and J. M. Lim. 2008. Establishment of autologous embryonic stem cells derived from preantral follicle culture and oocyte parthenogenesis. Fertil. Steril. 90:1910-1920. https://doi.org/10.1016/j.fertnstert.2007.01.099
  9. Mao, J., G. Wu, M. F. Smith, T. C. McCauley, T. C. Cantley, R. S. Prather, B. A. Didion and B. N. Day. 2002. Effects of culture medium, serum type, and various concentrations of follicle-stimulating hormone on porcine preantral follicular development and antrum formation in vitro. Biol. Reprod. 67:1197-1203. https://doi.org/10.1095/biolreprod67.4.1197
  10. Mao, J., M. F. Smith, E. B. Rucker, G. M. Wu, T. C. McCauley, T. C. Cantley, R. S. Prather and B. N. Day. 2004. Effect of epidermal growth factor and insulin-like growth factor I on porcine preantral follicular growth, antrum formation, and stimulation of granulosa cell proliferation and suppression of apoptosis in vitro. J. Anim. Sci. 82:1967-1975.
  11. Orisaka, M., K. Tajima, B. K. Tsang and F. Kotsuji. 2009. Oocyte-granulosa-theca cell interaction during preantral follicular development. J. Ovarian Res. 9:2-9.
  12. Oxender, W. D., B. Colenbrander, D. F. M. Van de Wiel and C. J. G. Wensing. 1979. Ovarian development in fetal and prepubertal pigs. Biol. Reprod. 21:715-721. https://doi.org/10.1095/biolreprod21.3.715
  13. Ozawa, M., T. Nagai, T. Somfai, M. Nakai, N. Maedomari, M. Fahrudin, N. W. Karja, H. Kaneko, J. Noguchi, K. Ohnuma, N. Yoshimi, H. Miyazaki and K. Kikuchi. 2008. Comparison between effects of 3-isobutyl-1-methylxanthine and FSH on gap junctional communication, LH-receptor expression, and meiotic maturation of cumulus-oocyte complexes in pigs. Mol. Reprod. Dev. 75:857-866. https://doi.org/10.1002/mrd.20820
  14. Su, Y. Q., K. Suqiura and J. J. Eppig. 2009. Mouse oocyte control of granulose cell development and function: paracrine regulation of cumulus cell metabolism. Semin. Reprod. Med. 27:32-42. https://doi.org/10.1055/s-0028-1108008
  15. Telfer, E. E. 1996. The development of methods for isolation and culture of preantral follicles from bovine and porcine ovaries. Theriogenology 45:101-110. https://doi.org/10.1016/0093-691X(95)00359-G
  16. Wu, D., Q. C. Cheung, L. Wen and J. Li. 2006. A growth-maturation system that enhances the meiotic and developmental competence of porcine oocytes isolated from small follicles. Biol. Reprod. 75:547-554. https://doi.org/10.1095/biolreprod.106.051300
  17. Wu, J., and Q. Tian. 2007b. Role of follicle stimulating hormone and epidermal growth factor in the development of porcine preantral follicle in vitro. Zygote 15:233-240. https://doi.org/10.1017/S0967199407004194
  18. Wu, J., B. R. Emery and D. T. Carrell. 2001. In vitro growth, maturation, fertilization, and embryonic development of oocytes from porcine preantral follicles. Biol. Reprod. 64:375-381. https://doi.org/10.1095/biolreprod64.1.375
  19. Wu, J., B. Xu and W. Wang. 2007a. Effects of luteinizing hormone and follicle stimulating hormone on the developmental competence of porcine preantral follicle oocytes grown in vitro. J. Assist. Reprod. Genet. 24:419-24. https://doi.org/10.1007/s10815-007-9154-5