DOI QR코드

DOI QR Code

Effects of Ruminal Infusion of Garlic Oil on Fermentation Dynamics, Fatty Acid Profile and Abundance of Bacteria Involved in Biohydrogenation in Rumen of Goats

  • Zhu, Zhi (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Mao, Shengyong (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhu, Weiyun (College of Animal Science and Technology, Nanjing Agricultural University)
  • Received : 2011.11.22
  • Accepted : 2012.04.19
  • Published : 2012.07.01

Abstract

This study aimed to investigate the effects of ruminal infusion of garlic oil (GO) on fermentation dynamics, fatty acid (FA) profile, and abundance of bacteria involved in biohydrogenation in the rumen. Six wethers fitted with ruminal fistula were assigned to two groups for cross-over design with a 14-d interval. Each 30-d experimental period consisted of a 27-d adaptation and a 3-d sample collection. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents collected before (0 h) and at 2, 4, 6, 8, and 10 h after morning feeding were used for fermentation analysis, and 0 h samples were further used for FA determination and DNA extraction. Garlic oil had no influence on dry matter intakes of concentrate and hay. During ruminal fermentation, GO had no effects on total VFA concentration and individual VFA molar proportions, whereas GO increased the concentrations of ammonia nitrogen and microbial crude protein (p<0.05). Compared with control, GO group took a longer time for total VFA concentration and propionate molar proportion to reach their respective maxima after morning feeding. The ratio of acetate to propionate in control reduced sharply after morning feeding, whereas it remained relatively stable in GO group. Fatty acid analysis showed that GO reduced saturated FA proportion (p<0.05), while increasing the proportions of C18, t11-18:1 (TVA), c9,t11-conjugated linoleic acid (c9,t11-CLA), t10,c12-CLA, and polyunsaturated FA (p<0.05). The values of TVA/(c9,t11-CLA+TVA) and C18:0/(TVA+C18:0) were reduced by GO (p<0.05). Real-time PCR showed that GO tended to reduce Butyrivibrio proteoclasticus abundance (p = 0.058), whereas GO had no effect on total abundance of the Butyrivibrio group bacteria. A low correlation was found between B. proteoclasticus abundance and C18:0/(TVA+C18:0) (p = 0.910). The changes of fermentation over time suggested a role of GO in delaying the fermentation process and maintaining a relatively modest change of ruminal environment. The inhibitory effects of GO on the final step of biohydrogenation may be related to its antibacterial activity against B. proteoclasticus and other unknown bacteria involved.

Keywords

Garlic Oil;Conjugated Linoleic Acid;Biohydrogenation;Butyrivibrio;Goat

Acknowledgement

Supported by : Natural Science Foundation of Jiangsu Province

References

  1. AOAC. 1990. Official methods of analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Virginia, USA.
  2. Benchaar, C., S. Calsamiglia, A. V. Chaves, G. R. Fraser, D. Colombatto, T. A. McAllister and K. A. Beauchemin. 2008. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 145:209-228. https://doi.org/10.1016/j.anifeedsci.2007.04.014
  3. Boeckaert, C., B. Vlaeminck, V. Fievez, L. Maignien, J. Dijkstra and N. Boon. 2008. Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community. Appl. Environ. Microbiol. 74:6923-6930. https://doi.org/10.1128/AEM.01473-08
  4. Broderick, G. A. and J. H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63:64-75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8
  5. Busquet, M., S. Calsamiglia, A. Ferret, P. W. Cardozo and C. Kamel. 2005a. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J. Dairy Sci. 88:2508-2516. https://doi.org/10.3168/jds.S0022-0302(05)72928-3
  6. Busquet, M., S. Calsamiglia, A. Ferret, M. D. Carro and C. Kamel. 2005b. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J. Dairy Sci. 88:4393-4404. https://doi.org/10.3168/jds.S0022-0302(05)73126-X
  7. Busquet, M., S. Calsamiglia, A. Ferret and C. Kamel. 2006. Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 89:761-771. https://doi.org/10.3168/jds.S0022-0302(06)72137-3
  8. Cardozo, P. W., S. Calsamiglia, A. Ferret and C. Kamel. 2004. Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. J. Anim. Sci. 82:3230-3236.
  9. Cardozo, P. W., S. Calsamiglia, A. Ferret and C. Kamel. 2005. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. J. Anim. Sci. 83:2572-2579.
  10. Castillejos, L., S. Calsamiglia, A. Ferret and R. Losa. 2007. Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 132:186-201. https://doi.org/10.1016/j.anifeedsci.2006.03.023
  11. Chaves, A. V., K. Stanford, M. E. R. Dugan, L. L. Gibson, T. A. McAllister, F. Van Herk and C. Benchaar. 2008. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest. Sci. 117:215-224. https://doi.org/10.1016/j.livsci.2007.12.013
  12. Ding, L. and A. Yokota. 2004. Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int. J. Syst. Evol. Microbiol. 54:2223-2230. https://doi.org/10.1099/ijs.0.02975-0
  13. Folch, J., M. Lees and G. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509.
  14. Harfoot, C. G. and G. P. Hazlewood. 1997. Lipid metabolism in the rumen. In: The Rumen Microbial Ecosystem, 2nd Ed. (Ed. P. N. Hobson and C. S. Stewart). Chapman & Hall, London, UK. pp. 382-426.
  15. Huws, S. A., E. J. Kim, M. R. F. Lee, M. B. Scott, J. K. S. Tweed, E. Pinloche, R. J. Wallace and N. D. Scollan. 2011. As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ. Microbiol. 13:1500-1512. https://doi.org/10.1111/j.1462-2920.2011.02452.x
  16. Huws, S. A., M. R. F. Lee, S. M. Muetzel, M. B. Scott, R. J. Wallace and N. D. Scollan. 2010. Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiol. Ecol. 73:396-407.
  17. Iciek, M., I. Kwiecien and L. Wlodek. 2009. Biological properties of garlic and garlic-derived organosulfur compounds. Environ. Mol. Mutagen. 50:247-265. https://doi.org/10.1002/em.20474
  18. Jenkins, T. C., R. J. Wallace, P. J. Moate and E. E. Mosley. 2008. Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 86:397-412.
  19. Kemp, P., R. White and D. Lander. 1975. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J. Gen. Microbiol. 90:100-114. https://doi.org/10.1099/00221287-90-1-100
  20. Kim, E. J., S. A. Huws, M. R. F. Lee, J. D. Wood, S. M. Muetzel, R. J. Wallace and N. D. Scollan. 2008. Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. J. Nutr. 138:889-896.
  21. Kim, E. J., R. Sanderson, M. S. Dhanoa and R. J. Dewhurst. 2005. Fatty acid profiles associated with microbial colonization of freshly ingested grass and rumen biohydrogenation. J. Dairy Sci. 88:3220-3230. https://doi.org/10.3168/jds.S0022-0302(05)73005-8
  22. Lou, Q., J. Xu, Y. Wang, C. Xue and Z. Sun. 2010. Analysis of fatty acid composition of Ulva pertusa Kjellm by gas chromatography-mass spectrometry. Chin. J. Chromatogr. 28:668-672. https://doi.org/10.3724/SP.J.1123.2010.00668
  23. Lourenço, M., E. Ramos-Morales and R. J. Wallace. 2010. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4:1008-1023. https://doi.org/10.1017/S175173111000042X
  24. Lu, J., K. Huang, N. Zang, J. Li, M. Zhang and Y. Wang. 2005. Analysis of fatty acid in tissues of Penaeus vannamei cultured in sea- and fresh-waters by ultrasonic extraction-capillary gas chromatography. Chin. J. Chromatogr. 23:193-195.
  25. Maia, M. R. G., L. C. Chaudhary, C. S. Bestwick, A. J. Richardson, N. McKain, T. R. Larson, I. A. Graham and R. J. Wallace. 2010. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 10:52-61. https://doi.org/10.1186/1471-2180-10-52
  26. Makkar, H. P. S., O. P. Sharma, R. K. Dawra and S. S. Negi. 1982. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65:2170-2173. https://doi.org/10.3168/jds.S0022-0302(82)82477-6
  27. Moon, C. D., D. M. Pacheco, W. J. Kelly, S. C. Leahy, D. Li, J. Kopečný and G. T. Attwood. 2008. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrateproducing ruminal bacterium. Int. J. Syst. Evol. Microbiol. 58:2041-2045. https://doi.org/10.1099/ijs.0.65845-0
  28. Paillard, D., N. McKain, M. T. Rincon, K. J. Shingfield, D. I. Givens and R. J. Wallace. 2007. Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. J. Appl. Microbiol. 103:1251-1261. https://doi.org/10.1111/j.1365-2672.2007.03349.x
  29. Polan, C., J. McNeill and S. Tove. 1964. Biohydrogenation of unsaturated fatty acids by rumen bacteria. J. Bacteriol. 88:1056-1064.
  30. Qin, W. L. 1982. Determination of rumen volatile fatty acids by means of gas chromatography. J. Nanjing Agricultural College. 4:110-116.
  31. Reuter, H. D., H. P. Koch and L. D. Lawson. 1996. Therapeutic effects and applications of garlic and its preparations. In: Garlic: the science and therapeutic application of Allium sativum L and related species (Ed. H. P. Koch and L. D. Lawson). Williams & Wilkins, Baltimore. pp. 135-212.
  32. SAS Institute. 2000. SAS User's guide: Statistics. Version 8.01. SAS Institute Inc., Cary, North Carolina.
  33. Shingfield, K. J., L. Bernard, C. Leroux and Y. Chilliard. 2010. Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal 4:1140-1166. https://doi.org/10.1017/S1751731110000510
  34. Van Soest, P. J. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  35. Wallace, R. J. 2004. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 63:621-629. https://doi.org/10.1079/PNS2004393
  36. Wanapat, M., K. Boonnop, C. Promkot and A. Cherdthong. 2011. Effects of alternative protein sources on rumen microbes. Maejo Int. J. Sci. Technol. 5:13-23.
  37. Wanapat, M., P. Khejornsart, P. Pakdee and S. Wanapat. 2008. Effect of supplementation of garlic powder on rumen ecology and digestibility of nutrients in ruminants. J. Sci. Food Agric. 88:2231-2237. https://doi.org/10.1002/jsfa.3333
  38. Yang, W. Z., C. Benchaar, B. N. Ametaj, A. V. Chaves, M. L. He and T. A. McAllister. 2007. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J. Dairy Sci. 90:5671-5681. https://doi.org/10.3168/jds.2007-0369
  39. Zhu, Z. 2011. Effects of garlic oil on ruminal biohydrogenation, milk fatty acid profile and lipogenesis-related gene expression in mammary gland of goats. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, Jiangsu.
  40. Zoetendal, E. G., A. D. L. Akkermans and W. M. D. Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:3854-3859.

Cited by

  1. Effects of Adaptation of In vitro Rumen Culture to Garlic Oil, Nitrate, and Saponin and Their Combinations on Methanogenesis, Fermentation, and Abundances and Diversity of Microbial Populations vol.6, pp.1664-302X, 2015, https://doi.org/10.3389/fmicb.2015.01434
  2. Garlic oil reduces ruminal fatty acid biohydrogenation in vitro vol.119, pp.4, 2016, https://doi.org/10.1002/ejlt.201500388
  3. Effect of supplementation of allicin on methanogenesis and ruminal microbial flora in Dorper crossbred ewes vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-015-0057-5
  4. Effects of Volatile Oil of Garlic on Feed Utilization, Blood Biochemistry and Performance of Heat-stressed Japanese Quail vol.11, pp.2, 2017, https://doi.org/10.3923/ajpsaj.2017.83.89
  5. Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep vol.59, pp.1, 2017, https://doi.org/10.1186/s40781-017-0139-3