DOI QR코드

DOI QR Code

Effects of Sophorae Radix on Human Gastric and Colorectal Adenocarcinoma Cells -Sophorae Radix and Cancer Cells-

  • Kim, Min-Chul (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine) ;
  • Lim, Bo-Ra (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine) ;
  • Lee, Hee-Jung (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine) ;
  • Kim, Hyung-Woo (Division of Pharmacology, Pusan National University School of Korean Medicine) ;
  • Kwon, Young-Kyu (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine) ;
  • Kim, Byung-Joo (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine)
  • Received : 2012.04.04
  • Accepted : 2012.05.31
  • Published : 2012.06.30

Abstract

The purpose of this study was to investigate the anti-cancer effects of Sophorae Radix (SR) and doxorubicin (DOX) in human gastric and colorectal adenocarcinoma cells. We used the human gastric and colorectal adenocarcinoma cell lines (MKN-45 and WIDR cells, respectively). We examined cell death by using the MTT(3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay and the caspase 3 assay with SR. To examine the inhibitory effects of SR, we performed a cell cycle (sub G1) analysis for the MKN-45 and WIDR cells after three days with SR. The reversibility of SR was examined for one-day to five-day treatments with SR. SR inhibited the growth of MKN-45 and WIDR cells in a dosedependent manner. Also, we showed that SR induced apoptosis in MKN-45 and WIDR cells by using the MTT assay, the caspase 3 assay and the sub-G1 analysis. SR combined with DOX markedly inhibited the growth of MKN-45 and WIDR cells compared to SR or DOX alone. After 3 days of treating MKN-45 and WIDR cells with SR, the fraction of cells in the sub-G1 phase was much higher than that of the control group. Our findings provide insights into unraveling the effects of SR on human gastric and colorectal adenocarcinoma cells and into developing therapeutic agents for use against gastric and colorectal adenocarcinomas.

References

  1. Park JG, Park KJ, Ahn YO, Song IS, Choi KW, Moon HY, et al. Risk of gastric cancer among Korean familial adenomatous polyposis patients. Report of three cases. Dis Colon Rectum. 1992;35(10);996-8 https://doi.org/10.1007/BF02253505
  2. Resende C, Thiel A, Machado JC, Ristimaki A. Gastric cancer: basic aspects. Helicobacter. 2011;16(Suppl1):38-44. https://doi.org/10.1111/j.1523-5378.2011.00879.x
  3. Yamada T. Textbook of Gastroenterology, 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 1999. p.1500-20.
  4. Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science. 1977;197(4306):893-5. https://doi.org/10.1126/science.887927
  5. Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem. 1999:274(31):21491-4. https://doi.org/10.1074/jbc.274.31.21491
  6. Braun-Falco M, Holtmann C, Lordick F, Ring J. [Follicular drug reaction from cetuximab: a common side effect in the treatment of metastatic colon carcinoma]. Hautarzt. 2006;57(8):701-4. [In German] https://doi.org/10.1007/s00105-005-0979-5
  7. Kelloff GJ, Crowell JA, Steele VE, Lubet RA, Boone CW, Malone WA, et al. Progress in cancer chemoprevention. Ann N Y Acad Sci. 1999;889:1-13. https://doi.org/10.1111/j.1749-6632.1999.tb08718.x
  8. Lin SS, Lai KC, Hsu SC, Yang JS, Kuo CL, Lin JP, et al. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett. 2009;285(2):127-33. https://doi.org/10.1016/j.canlet.2009.04.037
  9. Yodkeeree S, Garbisa S, Limtrakul P. Tetrahydrocurcumin inhibits HT1080 cell migration and invasion via downregulation of MMPs and uPA. Acta Pharmacol Sin. 2008;29(7):853-60. https://doi.org/10.1111/j.1745-7254.2008.00792.x
  10. Pitchakarn P, Suzuki S, Ogawa K, Pompimon W, Takahashi S, Asamoto M, et al. Kuguacin J, a triterpeniod from Momordica charantia leaf, modulates the progression of androgenindependent human prostate cancer cell line, PC3. Food Chem Toxicol. 2012;50(3-4):840-7. https://doi.org/10.1016/j.fct.2012.01.009
  11. Ming Y, Chen Z, Chen L, Lin D, Tong Q, Zheng Z, et al. Ginsenoside compound K attenuates metastatic growth of hepatocellular carcinoma, which is associated with the translocation of nuclear factor-${\kappa}B$ p65 and reduction of matrix metalloproteinase-2/9. Planta Med. 2011;77(5):428-33. https://doi.org/10.1055/s-0030-1250454
  12. Chang HM, But PPH. Pharmacology and applications of Chinese materia medica. Singapore: World Scientific; 1986. p.736-7.
  13. Ueno A, Morinaga K, Fukushima S, Iitaka Y, Koiso Y, Okuda S. Studies on lupin alkaloids. VI. Isolation and structure of (+)-isomatrine. Chem Pharm Bull. 1975;26(11):2560-6.
  14. Wu LJ, Miyase T, Ueno A, Kuroyanagi M, Noro T, Fukushima S. Studies on the constituents of Sophora flavescens. Ait. III. Chem Pharm Bull. 1985;33:3231-38. https://doi.org/10.1248/cpb.33.3231
  15. Kyogoku K, Hatayama K, Komatsu M. Constituents of Chinese crude drug Kushen (the root of Sophora flavescens Ait.). Isolation of five new flavonoids and formononetin. Chem Pharm Bull. 1973;21(12):2733-8. https://doi.org/10.1248/cpb.21.2733
  16. Yamamoto H, Ichimura M, Ishikawa N, Tanaka T, Iinuma M, Mizuno M. Localization of prenylated flavonoids in Sophora flavescens var. angustifolia plants. Phytochemistry. 1991;30:1732-8. https://doi.org/10.1016/0031-9422(91)84251-M
  17. Yamahara J, Mochizuki M, Fujimura T, Takaishi Y, Yoshida M, Tomimatsu T, et al. Antiulcer action of Sophora flavescens root and an active constituent. I. J Ethnopharmacol. 1990;29(2):173-7. https://doi.org/10.1016/0378-8741(90)90053-V
  18. Ding Y, Tian RH, Kinjo J, Nohara T, Kitagawa I. Three new oleanene glycosides from Sophora flavescens. Chem Pharm Bull. 1992;40(11):2990-4. https://doi.org/10.1248/cpb.40.2990
  19. Woo ER, Kwak JH, Kim HJ, Park H. A new prenylated flavonol from the roots of Sophora flavescens. J Nat Prod. 1998;61(12):1552-4. https://doi.org/10.1021/np980103j
  20. Kang TH, Jeong SJ, Ko WG, Kim NY, Lee BH, Inagaki M, et al. Cytotoxic lavandulyl flavanones from Sophora flavescens. J Nat Prod. 2000;63(5):680-1. https://doi.org/10.1021/np990567x
  21. Son JK, Park JS, Kim JA, Kim Y, Chung SR, Lee SH. Prenylated flavonoids from the roots of Sophora flavescens with tyrosinase inhibitory activity. Planta Med. 2003;69(6):559-61. https://doi.org/10.1055/s-2003-40643
  22. Kim SJ, Son KH, Chang HW, Kang SS, Kim HP. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Bio Pharm Bull. 2003;26(9):1348-50. https://doi.org/10.1248/bpb.26.1348
  23. Ding P, Chen D, Bastow KF, Nyarko AK, Wang X, Lee KH. Cytotoxic isoprenylated flavonoids from the roots of Sophora flavescens. Helv Chim Acta. 2004;87(1):2574-80. https://doi.org/10.1002/hlca.200490230
  24. Sato S, Takeo J, Aoyama C, Kawahara H. Na+-glucose cotransporter (SGLT) inhibitory flavonoids from the roots of Sophora flavescens. Bioorg Med Chem. 2007;15(10):3445-9. https://doi.org/10.1016/j.bmc.2007.03.011
  25. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991:139(2):271-9. https://doi.org/10.1016/0022-1759(91)90198-O
  26. Wang BJ, Won SJ, Yu ZR, Su CL. Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide. Food Chem Toxicol. 2005:43(4):543-52. https://doi.org/10.1016/j.fct.2004.12.008
  27. Hotz MA, Gong J, Traganos F, Darzynkiewicz Z. Flow cytometric detection of apoptosis: comparison of the assays of in situ DNA degradation and chromatin changes. Cytometry. 1994;15(3):237-44. https://doi.org/10.1002/cyto.990150309
  28. Vermes I, Haanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death. J Immunol Methods. 2000;243(1-2):167-90. https://doi.org/10.1016/S0022-1759(00)00233-7
  29. Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J. 1997;16(9):2271-81. https://doi.org/10.1093/emboj/16.9.2271
  30. Kim HA, You HK, Shin HS, Kim YC, Kang TH, Yu HH, et al. Effects of aqueous extract of Sophora flavescens on the expression of cell cycle regulatory proteins in human oral mucosal fibroblasts. Am J Chin Med. 2003;31(4):563-72. https://doi.org/10.1142/S0192415X03001260
  31. Chui CH, Lau FY, Tang JC, Kan KL, Cheng GY, Wong RS, et al. Activities of fresh juice of Scutellaria barbata and warmed water extract of Radix Sophorae Tonkinensis on antiproliferation and apoptosis of human cancer cell lines. Int J Mol Med. 2005;16(2):337-41.
  32. Long G, Wang G, Ye L, Lin B, Wei D, Liu L, et al. Important role of TNF-alpha in inhibitory effects of Radix Sophorae Flavescentis extract on vascular restenosis in a rat carotid model of balloon dilatation injury. Planta Med. 2009;75(12):1293-9. https://doi.org/10.1055/s-0029-1185602
  33. Wang S, Sun M, Zhang Y, Du H, He L. A new A431/cell membrane chromatography and online high performance liquid chromatography/mass spectrometry method for screening epidermal growth factor receptor antagonists from Radix sophorae flavescentis. J Chromatogr A. 2010;1217(32):5246-52. https://doi.org/10.1016/j.chroma.2010.06.037
  34. Patel T, Gores GJ, Kaufmann SH. The role of proteases during apoptosis. FASEB J. 1996;10(5):587-97. https://doi.org/10.1096/fasebj.10.5.8621058
  35. Liu D, Xin X, Su DH, Liu J, Wei Q, Li B, et al. Two new lavandulyl flavonoids from Sophora flavescens. Nat Prod Commun. 2010;5(12):1889-91.
  36. Piao XL, Piao XS, Kim SW, Park JH, Kim HY, Cai SQ. Identification and characterization of antioxidants from Sophora flavescens. Biol Pharm Bull. 2006;29(9):1911-5. https://doi.org/10.1248/bpb.29.1911
  37. Jin JH, Kim JS, Kang SS, Son KH, Chang HW, Kim HP. Anti-inflammatory and anti-arthritic activity of total flavonoids of the roots of Sophora flavescens. J Ethnopharmacol. 2010;127(3):589-95. https://doi.org/10.1016/j.jep.2009.12.020

Cited by

  1. Linear Quantitative Profiling Method Fast Monitors Alkaloids of Sophora Flavescens That Was Verified by Tri-Marker Analyses vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0161146