Anti-Inflammatory Effects of Ethyl Acetate Fraction from Cnidium officinale Makino on LPS-Stimulated RAW 264.7 and THP-1 Cells

  • Jeong, Jin-Boo (Medicinal Plant Resources Major, Andong National University) ;
  • Hong, Se-Chul (Medicinal Plant Resources Major, Andong National University) ;
  • Jeong, Hyung-Jin (Medicinal Plant Resources Major, Andong National University) ;
  • Koo, Jin-Suk (Medicinal Plant Resources Major, Andong National University)
  • Received : 2010.10.26
  • Accepted : 2011.10.28
  • Published : 2012.06.30


This work aimed to elucidate the anti-inflammatory effects of ethyl acetate fraction from Cnidium officinale Makino with a cellular system of LPS-stimulated RAW 264.7 and THP-1 cells. Some key pro-inflammatory cytokines and mediators including NO, iNOS, $PGE_2$, COX-2, TNF-${\alpha}$, NF-${\kappa}B$ p50 and NF-${\kappa}B$ p65 were studied by sandwich ELISA and western blot analysis. Ethyl acetate fraction could significantly inhibit the production of NO, $PGE_2$, TNF-${\alpha}$, iNOS and COX-2 in LPS-stimulated cell than that of single LPS-stimulated. And ethyl acetate fraction suppresses the activation of NF-${\kappa}B$ p50 and NF-${\kappa}B$ p65. All the results showed that ethyl acetate fraction had a good anti-inflammatory effect on LPS-stimulated RAW264.7 and THP-1 cells. Taken together, the anti-inflammatory actions of ethyl acetate fraction from Cnidium officinale Makino might be due to the down-regulation of NO, $PGE_2$, TNF-${\alpha}$, iNOS and COX-2 via the suppression of NF-${\kappa}B$ activation.


Supported by : National Research Foundation of Korea (NRF)


  1. Ahn, M.Y., K.S. Ryu, Y.W. Lee and Y.S. Kim. 2000. Cytotoxicity and L-amino acid oxidase activity of crude insect drugs. Arch. Pharm. Res. 23:477-481.
  2. Andreakos, E., B. Foxwel and M. Feldmann. 2002. Is targeting Toll-like receptors and their signaling pathway a useful therapeutic approach to modulating cytokine-driven inflammation? Immunol. Rev. 202:250-265.
  3. Banskota, A.H., Y. Tezuka, N.Y. Nguyen, S. Awale, T. Vobukawa and S. Kadota. 2003. DPPH radical scavenging and nitric oxide inhibitory activities of the constituents from the wood of Taxus yunnanensis. Planta Med. 69:500-505.
  4. Bosca, L., M. Zeini, P.G. Traves and S. Hortelano. 2005. Nitric oxide and cell viability in inflammatory cells: a roll for NO in macrophage function and fate. Toxicology 208:249-258.
  5. Buttery, L.D., T.J. Evans, D.R. Springall, A. Carpenter, J. Cohen and J.M. Polak. 1994. Immunochemical localization of inducible nitric oxide synthase in endotoxin-treated rats. Lab. Invest. 71:755-764.
  6. Jeong, S.I., D.H. Kwak, S. Lee, Y.K. Choo, W.H. Woo, K.S. Keum, B.K. Choi and K.Y. Jung. 2005. Inhibitory effects of Cnidium offcinale Makino and Tabanus fulvus Meigan on the high glucose-induced proliferation of glomerular mesangial cells. Phytomedicine 12:648-655.
  7. Jung, H.W., U.K. Seo, J.H. Kim, K.L. Leem and Y.K. Park. 2009. Flower extracts of Panax notoginseng attenuates lipopolysaccharide- induced inflammatory response via blocking of NF-kB signaling in murine macrophages. J. Ethnopharmacol. 122:313-319.
  8. Libby, P., P.M. Ridker and A. Maseri. 2002. Inflammation and atherosclerosis. Circulation 105: 1135-1143.
  9. Lim, J.H., Y.M. Park, J.S. Kim, H.J. Jeong and E.W. Seo. 2011. Effect of Cnidium officinale extract on recovery capability of allergic contact-dermatitis in Rat. Korean J. Plant Res. 24:430-437 (in Korean).
  10. Locksley, R.M., N. Killeen and M.J. Lenardo. 2001. "The TNF and TNF receptor superfamilies: integrating mammalian biology". Cell 104:487-501.
  11. Menichini, F., F. Conforti, D. Rigano, C. Formisano, F. Piozzi and F. Senatore. 2009. Phytochemical compositon, anti-inflammatory and antitumour activities of four Teucrium essential oils from Greece. Food Chem. 115:679-686.
  12. Moncada, S. 1999. Nitric oxide: discovery and impact on clinical medicine. Journal of the Royal Society of Medicine 92:164- 169.
  13. Nathan, C. 2002. Nitric oxide as a secretary product of mammalian cells. FASEB J. 6: 3051-3064.
  14. Pokharel, Y.R., Q.H. Liu, J.W. Oh, R. Woo and K.W. Kang. 2007. 4-Hydroxykobusin inhibits the induction of nitric oxide synthase by inhibiting NF-kB and AP-1 Activation. Biol. Pharm. Bull. 30:1097-1101.
  15. Rishton, G.M. 2008. Natural products as a robust source of new drugs and drug leads: past successes and present day issues. Am. J. Cardiol. 101:43D-49D.
  16. Rocca, B. and G.A. FitzGerald. 2002. Cyclooxygenases and prostaglandins: shaping up the immune response. Int. Immunopharmacol. 2:603-630.
  17. Sim, J.S., J.B. Jeong, J.H. Lee, T.H. Kwon, Y.J. Cha and H.J. Jeong. 2010. Inhibitory effect of the phenolic compounds from apples against oxidative damage and inflammation. Korean J. Plant Res. 23:487-497.
  18. Turini, M.E. and R.N. DuBois. 2002. Cyclooxygenase-2: a therapeutic target. Annu. Rev. Med. 53:35-57.
  19. Yang, C.W., W.L. Chen, P.L. Wu, H.Y. Tseng and S.J. Lee. 2006. Anti-Inflammatory mechanisms of phenanthroindolizidine alkaloids. Mol. Pharmacol. 69:749-758.
  20. Yin, H., F. Zhang, M. Yu, H. Cheng, J. Lin, Y. Gao, B. Han and L. Zhu. 2005. Beta-endorphin ameliorates synovial cell hyperfunction in the collagen-induced arthritis rat model by specific downregulation of NF-kappa B activity. Neuroendocrinology 81:10-18.
  21. Yoon, W.J., Y.M. Ham, B.S. Yoo, J.Y. Moon, J.S. Koh and C.G. Hyun. 2009. Oenothera laciniata inhibits lipopolysaccharide induced production of nitric oxide, prostaglandin $E_{2}$, and proinflammatory cytokines in RAW264.7 macrophages. J. Biosci. Bioeng. 107:429-438.
  22. Yoshimura, A. 2006. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci. 97:439-447.
  23. Zhao, F., L. Wang and K. Liu. 2009. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway. J. Ethnopharmacol. 122:457-462

Cited by

  1. Anti-inflammatory Effect of Castanopsis cuspidata Extracts in Murine Macrophage RAW 264.7 Cells vol.27, pp.5, 2014,
  2. Comparative Study of Litsea japonica Leaf and Fruit Extract on the Anti-inflammatory Effects vol.28, pp.2, 2015,
  3. Immuno-Modulatory Activities of Polysaccharides separated from Chrysanthemum zawadskii var. latilobum in Macrophage Cells vol.29, pp.3, 2016,
  4. Anti-Inflammatory Effect of Grateloupia imbricata Holmes Ethanol Extract on LPS-Induced RAW 264.7 Cells vol.45, pp.2, 2016,
  5. Effects of the Cnidium Officinale Makino Water Extract on the Lipid Metabolism of Rats Fed a Hypercholesterol Diet vol.26, pp.2, 2015,
  6. Anti-inflammatory Effect of Water Extract from Tuna Heart on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells vol.30, pp.6, 2015,
  7. -Ligustilide, in the Water Extract of Cnidium Rhizome from Different Geographical Regions and Species Using HPLC-UVD Analysis vol.39, pp.6, 2018,