DOI QR코드

DOI QR Code

A NOTE ON UNITS OF REAL QUADRATIC FIELDS

  • Received : 2011.04.05
  • Published : 2012.07.31

Abstract

For a positive square-free integer $d$, let $t_d$ and $u_d$ be positive integers such that ${\epsilon}_d=\frac{t_d+u_d{\sqrt{d}}}{\sigma}$ is the fundamental unit of the real quadratic field $\mathbb{Q}(\sqrt{d})$, where ${\sigma}=2$ if $d{\equiv}1$ (mod 4) and ${\sigma}=1$ otherwise For a given positive integer $l$ and a palindromic sequence of positive integers $a_1$, ${\ldots}$, $a_{l-1}$, we define the set $S(l;a_1,{\ldots},a_{l-1})$ := {$d{\in}\mathbb{Z}|d$ > 0, $\sqrt{d}=[a_0,\overline{a_1,{\ldots},2a_0}]$}. We prove that $u_d$ < $d$ for all square-free integer $d{\in}S(l;a_1,{\ldots},a_{l-1})$ with one possible exception and apply it to Ankeny-Artin-Chowla conjecture and Mordell conjecture.

Keywords

units;real quadratic fields

References

  1. B. D. Beach, H. C. Williams, and C. R. Zarnke, Some computer results on units in quadratic and cubic fields, Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress (Lakehead Univ., Thunder Bay, Ont., 1971), pp. 609-648, Lake-head Univ., Thunder Bay, Ont., 1971.
  2. R. Hashimoto, Ankeny-Artin-Chowla conjecture and continued fraction, J. Number Theory 90 (2001), no. 1, 143-153. https://doi.org/10.1006/jnth.2001.2652
  3. J. Mc Laughlin, Multi-variable polynomial solutions to Pell's equation and fundamental units in real quadratic fields, Pacific J. Math. 210 (2003), no. 2, 335-349. https://doi.org/10.2140/pjm.2003.210.335
  4. R. A. Mollin, Quadratics, CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 1996.
  5. R. A. Mollin and P. G. Walsh, A note on powerful numbers, quadratic fields and the Pellian, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), no. 2, 109-114.
  6. A. J. Van Der Poorten, H. J. J. te Riele, and H. C. Williams, Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000, Math. Comp. 70 (2001), no. 235, 1311-1328.
  7. A. J. Van Der Poorten, H. J. J. te Riele, and H. C. Williams, Corrigenda and addition to \Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000", Math. Comp. 72 (2003), no. 241, 521-523.
  8. K. Tomita, Explicit representation of fundamental units of some real quadratic fields. II, J. Number Theory 63 (1997), no. 2, 275-285. https://doi.org/10.1006/jnth.1997.2088

Cited by

  1. ON CONTINUED FRACTIONS, FUNDAMENTAL UNITS AND CLASS NUMBERS OF REAL QUADRATIC FUNCTION FIELDS vol.27, pp.2, 2014, https://doi.org/10.14403/jcms.2014.27.2.183
  2. REAL QUADRATIC FUNCTION FIELDS OF MINIMAL TYPE vol.28, pp.4, 2013, https://doi.org/10.4134/CKMS.2013.28.4.735
  3. Fundamental units and consecutive squarefull numbers vol.13, pp.01, 2017, https://doi.org/10.1142/S1793042117500142