DOI QR코드

DOI QR Code

N-SUBALGEBRAS OF TYPE (∈, ∈ ∨ q) BASED ON POINT N-STRUCTURES IN BCK/BCI-ALGEBRAS

Lee, Kyoung-Ja;Jun, Young-Bae;Zhang, Xiaohong

  • 투고 : 2010.12.28
  • 발행 : 2012.07.31

초록

Characterizations of $\mathcal{N}$-subalgebra of type (${\in}$, ${\in}{\vee}q$) are provided. The notion of $\mathcal{N}$-subalgebras of type ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$) is introduced, and its characterizations are discussed. Conditions for an $\mathcal{N}$-subalgebra of type (${\in}$, ${\in}{\vee}q$) (resp. ($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$) to be an $\mathcal{N}$-subalgebra of type (${\in}$, ${\in}$) are considered.

키워드

point $\mathcal{N}$-structure;closed (resp. open) support;q-support;${\in}{\vee}q$-support;$\mathcal{N}$-subalgebra of types (${\in}$, ${\in}{\vee}q$);($\bar{\in}$, $\bar{\in}{\vee}\bar{q}$)

참고문헌

  1. Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006.
  2. Y. B. Jun, M. S. Kang, and C. H. Park, N-subalgebras in BCK/BCI-algebras based on point N-structures, Int. J. Math. Math. Sci. 2010 (2010), Article ID 303412, 9 pages.
  3. Y. B. Jun and M. Kondo, On transfer principle of fuzzy BCK/BCI-algebras, Sci. Math. Jpn. 59 (2004), no. 1, 35-40.
  4. Y. B. Jun and K. J. Lee, The essence of subtraction algebras based on N-structures, Commun. Korean Math. Soc. (to appear).
  5. Y. B. Jun, K. J. Lee, and S. Z. Song, N-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417-437.
  6. Y. B. Jun, M. A. Ozturk, and E. H. Roh, N-structures applied to closed ideals in BCH-algebras, Int. J. Math. Math. Sci. 2010 (2010), Article ID 943565, 9 pages.
  7. M. Kondo and W. A. Dudek, On the transfer principle in fuzzy theory, Mathware Soft Comput. 12 (2005), no. 1, 41-55.
  8. J. Meng and Y. B. Jun, BCK-Algebras, Kyungmoon Sa Co., Seoul, 1994.