M-quantile kernel regression for small area estimation

소지역 추정을 위한 M-분위수 커널회귀

  • 심주용 (인제대학교 데이터정보학과) ;
  • 황창하 (단국대학교 정보통계학과)
  • Received : 2012.06.17
  • Accepted : 2012.07.16
  • Published : 2012.07.31


An approach widely used for small area estimation is based on linear mixed models. However, when the functional form of the relationship between the response and the input variables is not linear, it may lead to biased estimators of the small area parameters. In this paper we propose M-quantile kernel regression for small area mean estimation allowing nonlinearities in the relationship between the response and the input variables. Numerical studies are presented that show the sample properties of the proposed estimation method.


Supported by : 한국연구재단


  1. Breckling, J. and Chambers, R. (1988). M-quantiles. Biometrika, 75, 761-771.
  2. Chambers, R. and Tzavidis, N. (2006) M-quantile models for small area estimation. Biometrika, 93, 255-268.
  3. Cristianini, N. and Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernelbased learning methods, Cambridge University Press.
  4. Harville, D. A. (1976). Extension of the Gauss-Markov theorem to include the estimation of random effects. Annals of Statistics, 4, 384-395.
  5. Huber, P. J. (1981). Robust statistics, John Wiley & Sons, New York.
  6. Hwang, C. (2010). Support vector quantile regression for longitudinal data. Journal of the Korean Data & Information Science Society, 21, 309-316.
  7. Hwang, C. (2011). Asymmetric least squares regression estimation using weighted least squares support vector machine. Journal of the Korean Data & Information Society, 22, 995-1005.
  8. Hwang, C. and Shin, S. (2010). Estimating GARCH models using kernel machine learning. Journal of the Korean Data & Information Science Society, 21, 419-425.
  9. Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50.
  10. Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. Proceedings of 2nd Berkeley Symposium, University of California Press, Berkeley.
  11. Laird, N. M. and Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics, 56, 89-97.
  12. Mercer, J. (1909). Functions of positive and negative type and their connection with theory of integral equations. Philosophical Transactions of Royal Society A, 415-446.
  13. Opsomer, J. D., Claesken, G., Ranalli, M. G., Kauermann, G. and Breidt, F. J. (2008). Non-parametric small area estimation using penalized spline regression. Journal of the Royal Statistical Society B, 70, 265-286.
  14. Rao, J. N. K. (2003). Small area estimation, John Wiley & Sons, New York.
  15. Salvati, N., Ranalli, M. G. and Pratesi, M. (2011). Small area estimation of the mean using non-parametric M-quantile regression: A comparison when a linear mixed model does not hold. Journal of Statistical Computation and Simulation, 81, 945-964.
  16. Scholkopf, B. and Smola, A. (2002). Learning with kernels-support vector machines, regularization, optimization and beyond, MIT Press, Cambridge.
  17. Shim, J. and Hwang, C. (2011). Forecasting volatility via conditional autoregressive value at risk model based on support vector quantile regression. Journal of the Korean Data & Information Society, 22, 589-596.
  18. Vapnik, V. N. (1995). The nature of statistical learning theory, Springer, New York.

Cited by

  1. Generalized kernel estimating equation for panel estimation of small area unemployment rates vol.24, pp.6, 2013,
  2. Estimating small area proportions with kernel logistic regressions models vol.25, pp.4, 2014,
  3. Support vector quantile regression ensemble with bagging vol.25, pp.3, 2014,