DOI QR코드

DOI QR Code

Preparation, Characterization and Catalytic Activity of Tin Dioxide and Zero-Valent Tin Nanoparticles

  • Pouretedal, H.R. ;
  • Shafeie, A. ;
  • Keshavarz, M.H.
  • Received : 2012.01.18
  • Accepted : 2012.06.04
  • Published : 2012.08.20

Abstract

The tin (IV) oxide nanoparticles are prepared by controlled precipitation method and calcined at temperatures of $200-600^{\circ}C$. The prepared $SnO_2$ nanoparticles characterized by XRD patterns, TEM image, IR and UV-Vis spectra. The XRD patterns and TEM image show the tetragonal structure and spherical morphology for $SnO_2$ nanoparticles, respectively. The photocatalytic activity of the prepared $SnO_2$ nanoparticles studied in degradation reaction of methylene blue (MB). The results show the size of nanoparticles, band-gap energy and photocatalytic activity of $SnO_2$ depends on the calcinations temperature. The $SnO_2$ nanoparticles calcined at $500^{\circ}C$ indicated the highest photoreactivity. Also, the zero-valent tin (ZVT) nanoparticles with tetragonal structure are prepared by a reducing agent and used as a catalyst in degradation of MB. In basic pH of 11, the degradation >95% of MB at time 150 min obtained at presence of ZVT nanoparticles.

Keywords

$SnO_2$;Sn;Nanoparticles;Methylene blue;Photocatalyst

References

  1. Robert, D. Catal. Today 2007, 122, 20. https://doi.org/10.1016/j.cattod.2007.01.060
  2. Jing, L.; Fu, H.; Wang, B.; Wang, D.; Xin, B.; Li, S.; Sun, J. Appl. Catal., B: Environ. 2006, 62, 282. https://doi.org/10.1016/j.apcatb.2005.08.012
  3. Jing, L.; Wang, D.; Wang, B.; Li, S.; Xin, B.; Fu, H.; Sun, J. J. Mol. Catal., A: Chem. 2006, 244, 193. https://doi.org/10.1016/j.molcata.2005.09.020
  4. Augugliaro, V.; Litter, M.; Palmisano, L.; Sori, J. J. Photochem. Photobiol. C 2006, 7 127. https://doi.org/10.1016/j.jphotochemrev.2006.12.001
  5. Liotta, L. F.; Gruttadauria, M.; Di Carlo, G.; Perrini, G.; Librando, V. J. Hazard. Mater. 2009, 162, 588. https://doi.org/10.1016/j.jhazmat.2008.05.115
  6. Pouretedal, H. R.; Norozi, A.; Keshavarz, M. H.; Semnani, A. J. Hazard. Mater. 2009, 162, 674. https://doi.org/10.1016/j.jhazmat.2008.05.128
  7. Pouretedal, H. R.; Eskandari, H.; Keshavarz, M. H.; Semnani, A. Acta Chim. Slov. 2009, 56, 353.
  8. Wang, H.; Baek, S.; Lee, J.; Lim, S. Chem. Eng. J. 2009, 146, 355. https://doi.org/10.1016/j.cej.2008.06.016
  9. Dhage, S. R.; Gaikwad, S. P.; Samuel, V.; Ravi, V. Bull. Mater. Sci. 2004, 27, 221. https://doi.org/10.1007/BF02708509
  10. Kandjani, A. E.; Salehpoor, P.; Tabrizi, M. F.; Arefian, N. A.; Vaezi, M. R. Mater. Sci.-Poland 2010, 28, 377.
  11. Balan, L.; Schneider, R.; Billaud, D.; Ghanbaj, J. Mater. Lett. 2005, 59, 1080. https://doi.org/10.1016/j.matlet.2004.12.010
  12. Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc. 2003, 125, 5652. https://doi.org/10.1021/ja0345524
  13. Bottani, C. E.; Li Bassi, A.; Tanner, B. K.; Stella, A.; Tognini, P.; Cheyssac, P.; Kofman, R. Mater. Sci. Eng., C, Biomim. Mater., Sens. Syst. 2001, 15, 41. https://doi.org/10.1016/S0928-4931(01)00214-4
  14. Depero, L. E.; Bontempi, E.; Sangaletti, L.; Pagliara, S. J. Chem. Phys. 2003, 118, 1400. https://doi.org/10.1063/1.1531074
  15. Krishnakumar, T.; Jayaprakash, R.; Parthibavarman, M.; Phani, A. R.; Singh, V. N.; Mehta, B. R. Mater. Lett. 2009, 63, 896. https://doi.org/10.1016/j.matlet.2009.01.032
  16. Anandan, K.; Rajendran, V.; J. Non-Oxide Glasses 2010, 2, 83.
  17. Zhang, M.; An, T.; Hu, X.; Wang, C.; Sheng, G.; Fu, J. Appl. Catal., A 2004, 260, 215. https://doi.org/10.1016/j.apcata.2003.10.025
  18. Jiang, L.; Sun, G.; Zhou, Z.; Sun, S.; Wang, Q.; Yan, S.; Li, H.; Tian, J.; Guo, J.; Zhou, B.; Xin, Q. J. Phys. Chem. B 2005, 109, 8774.
  19. Zhao, Y.; Zhang, Z.; Dang, H. Mater. Sci. Eng. A 2003, 359, 405. https://doi.org/10.1016/S0921-5093(03)00395-2
  20. Noh, M.; Kim, Y.; Kim, M. G.; Lee, H.; Kim, H.; Kwon, Y.; Lee, Y.; Cho, J. Chem. Mater. 2005, 17, 3320. https://doi.org/10.1021/cm0504337
  21. Gu, F.; Wang, S. F.; Leu, M. K.; Qi, Y. X.; Zhou, G. J.; Xu, D.; Yuan, D. R. Inorg. Chem. Commun. 2003, 6, 882. https://doi.org/10.1016/S1387-7003(03)00135-7
  22. Rodriguez-Santiago, V.; Fedkin, M. V.; Wesolowski, D. J.; Rosenqvist, J.; Lvov, S. N. Langmuir 2009, 25, 8101. https://doi.org/10.1021/la900611u
  23. Pouretedal, H. R.; Hosseini, M. Acta Chim. Slov. 2010, 57, 415.
  24. Pouretedal, H.R.; Kadkhodaie, A. Chin. J. Catal. 2010, 31, 1328. https://doi.org/10.1016/S1872-2067(10)60121-0
  25. Nezamzadeh-Ejhieh, A.; Hushmandrad, S. Appl. Catal., A 2010, 388, 149. https://doi.org/10.1016/j.apcata.2010.08.042
  26. Nezamzadeh-Ejhieh, A.; Salimi, Z. Appl. Catal., A 2010, 390, 110. https://doi.org/10.1016/j.apcata.2010.09.038
  27. Wang, K.; Zhang, J.; Lou, L.; Yang, S.; Chen, Y. J. Photochem. Photobiol. A 2004, 165, 201. https://doi.org/10.1016/j.jphotochem.2004.03.025
  28. Pouretedal, H. R.; Keshavarz, M. H. J. Alloys Comp. 2010, 501, 130. https://doi.org/10.1016/j.jallcom.2010.04.058
  29. Kudo, A.; Niishiro, R.; Iwase, A.; Kato, H. Chem. Phys. 2007, 339, 104. https://doi.org/10.1016/j.chemphys.2007.07.024
  30. Lin, C. J.; Liou, Y. H.; Lo, S. L. Chemosphere 2009, 74, 314. https://doi.org/10.1016/j.chemosphere.2008.08.046
  31. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemannt, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  32. Satapanajaru, T.; Chompuchan, C.; Suntornchot, P.; Pengthamkeerati, P. Desalination 2011, 266, 218. https://doi.org/10.1016/j.desal.2010.08.030

Cited by

  1. Investigation of superior electro-optical properties of SnO 2 /SiO 2 nanocomposite over its individual counterpart SnO 2 nanoparticles vol.193, 2017, https://doi.org/10.1016/j.matchemphys.2017.02.039
  2. Band gap narrowing and photocatalytic studies of Nd3+ ion-doped SnO2 nanoparticles using solar energy vol.39, pp.1, 2016, https://doi.org/10.1007/s12034-015-1142-2
  3. Synthesis of biogenic SnO2 nanoparticles and evaluation of thermal, rheological, antibacterial and antioxidant activities vol.270, 2015, https://doi.org/10.1016/j.powtec.2014.10.034
  4. Supported Bimetallic AgSn Nanoparticle as an Efficient Photocatalyst for Degradation of Methylene Blue Dye vol.10, pp.04, 2015, https://doi.org/10.1142/S1793292015500599
  5. Preparation and characterization of Zr and Sn doped TiO2nanocomposite and photocatalytic activity in degradation of tetracycline vol.57, pp.23, 2016, https://doi.org/10.1080/19443994.2015.1041056
  6. Influence of Ti addition on the room temperature ferromagnetism of tin oxide (SnO2) nanocrystal vol.395, 2015, https://doi.org/10.1016/j.jmmm.2015.07.083
  7. Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route vol.20, pp.4, 2014, https://doi.org/10.1016/j.jiec.2013.08.006
  8. Artificial patination in Early Iron Age Europe: an analytical case study of a unique bronze artefact vol.57, 2015, https://doi.org/10.1016/j.jas.2015.01.025
  9. Nanoparticles Using Biological Molecule vol.360, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/360/1/012007