DOI QR코드

DOI QR Code

Evaluation of a Nutrition Model in Predicting Performance of Vietnamese Cattle

  • Parsons, David (Tasmanian Institute of Agriculture and School of Agricultural Science, University of Tasmania) ;
  • Van, Nguyen Huu (Faculty of Animal Sciences, Hue University of Agriculture and Forestry) ;
  • Malau-Aduli, Aduli E.O. (Tasmanian Institute of Agriculture and School of Agricultural Science, University of Tasmania) ;
  • Ba, Nguyen Xuan (Faculty of Animal Sciences, Hue University of Agriculture and Forestry) ;
  • Phung, Le Dinh (Faculty of Animal Sciences, Hue University of Agriculture and Forestry) ;
  • Lane, Peter A. (Tasmanian Institute of Agriculture and School of Agricultural Science, University of Tasmania) ;
  • Ngoan, Le Duc (Faculty of Animal Sciences, Hue University of Agriculture and Forestry) ;
  • Tedeschi, Luis O. (Department of Animal Science, Texas A&M University, College Station)
  • Received : 2012.01.17
  • Accepted : 2012.05.03
  • Published : 2012.09.01

Abstract

The objective of this study was to evaluate the predictions of dry matter intake (DMI) and average daily gain (ADG) of Vietnamese Yellow (Vang) purebred and crossbred (Vang with Red Sindhi or Brahman) bulls fed under Vietnamese conditions using two levels of solution (1 and 2) of the large ruminant nutrition system (LRNS) model. Animal information and feed chemical characterization were obtained from five studies. The initial mean body weight (BW) of the animals was 186, with standard deviation ${\pm}33.2$ kg. Animals were fed ad libitum commonly available feedstuffs, including cassava powder, corn grain, Napier grass, rice straw and bran, and minerals and vitamins, for 50 to 80 d. Adequacy of the predictions was assessed with the Model Evaluation System using the root of mean square error of prediction (RMSEP), accuracy (Cb), coefficient of determination ($r^2$), and mean bias (MB). When all treatment means were used, both levels of solution predicted DMI similarly with low precision ($r^2$ of 0.389 and 0.45 for level 1 and 2, respectively) and medium accuracy (Cb of 0.827 and 0.859, respectively). The LRNS clearly over-predicted the intake of one study. When this study was removed from the comparison, the precision and accuracy considerably increased for the level 1 solution. Metabolisable protein was limiting ADG for more than 68% of the treatment averages. Both levels differed regarding precision and accuracy. While level 1 solution had the least MB compared with level 2 (0.058 and 0.159 kg/d, respectively), the precision was greater for level 2 than level 1 (0.89 and 0.70, respectively). The accuracy (Cb) was similar between level 1 and level 2 (p = 0.8997; 0.977 and 0.871, respectively). The RMSEP indicated that both levels were on average under-or over-predicted by about 190 g/d, suggesting that even though the accuracy (Cb) was greater for level 1 compared to level 2, both levels are likely to wrongly predict ADG by the same amount. Our analyses indicated that the level 1 solution can predict DMI reasonably well for this type of animal, but it was not entirely clear if animals consumed at their voluntary intake and/or if the roughness of the diet decreased DMI. A deficit of ruminally-undegradable protein and/or a lack of microbial protein may have limited the performance of these animals. Based on these evaluations, the LRNS level 1 solution may be an alternative to predict animal performance when, under specific circumstances, the fractional degradation rates of the carbohydrate and protein fractions are not known.

Keywords

Mathematical Models;Performance;Dry Matter Intake;Beef Cattle

References

  1. AOAC, 2000. Official methods of analysis of AOAC International. 17th edn. Association of Official Analytical Chemists, Arlington, VA.
  2. AOAC, 2006. Official methods of analysis of AOAC International 18th edn. Association of Official Analytical Chemists, Arlington, VA.
  3. Ba, N. X., N. H. Van, L. D. Ngoan, C. M. Leddin and P. T. Doyle. 2008a. Effects of amount of concentrate supplement on forage intake, diet digestibility and live weight gain in Yellow cattle in Vietnam. Asian-Aust. J. Anim. Sci. 21:1736-1744. https://doi.org/10.5713/ajas.2008.80082
  4. Ba, N. X., N. H. Van, L. D. Ngoan, C. M. Leddin and P. T. Doyle. 2008b. Amount of cassava powder fed as supplement affects feed intake and live weight gain in Laisind cattle in Vietnam. Asian-Aust. J. Anim. Sci. 21:1143-1150. https://doi.org/10.5713/ajas.2008.70479
  5. Ba, N. X., D. V. Dung, N. H. Van, L. D. Phung, L. D. Ngoan and V. C. Cuong. 2010a. Effects of crude protein levels in concentrate on meat yield and quality of Vietnamese Yellow cattle. Journal of Animal Husbandry Sciences and Technics 11:22-27.
  6. Ba, N. X., D. V. Dung, N. H. Van, L. D. Phung, L. D. Ngoan and V. C. Cuong. 2010b. Effects of amount of concentrate supplement on live weight gain and meat quality of Vietnamese Yellow cattle. Journal of Science and Technology 27:37-44.
  7. Ba, N. X., N. H. Van, L. D. Phung, L. V. Phuoc, D. V. Dung, N. H. Nguyen and B. Q. Tuan. 2008c. Effects of some factors on the use of agricultural by-products for ruminants in Quang Ngai province. Hue University Journal of Science 46:17-25.
  8. Belk, K. E., J. D. Tatum and F. L. Williams Jr. 1991. Deposition and distribution of carcass fat for steers differing in frame size and muscle thickness. J. Anim. Sci. 69:609-616.
  9. Berg, R. T., B. B. Andersen and T. Liboriussen. 1978a. Growth of bovine tissues 1. Genetic influences on growth patterns of muscle, fat and bone in young bulls. Anim. Sci. 26:245-258.
  10. Berg, R. T., B. B. Andersen and T. Liboriussen. 1978b. Growth of bovine tissues 3. Genetic influences on patterns of fat growth and distribution in young bulls. Anim. Sci. 27:63-69.
  11. Conrad, H. R., W. P. Weiss, W. O. Odwongo and W. L. Shockey. 1984. Estimating net energy lactation from components of cell solubles and cell walls. J. Dairy Sci. 67:427-436. https://doi.org/10.3168/jds.S0022-0302(84)81320-X
  12. Detmann, E., S. C. Valadares Filho, D. S. Pina, L. T. Henriques, M. F. Paulino, K. A. Magalhães, P. A. Silva and M. L. Chizzotti. 2008. Prediction of the energy value of cattle diets based on the chemical composition of the feeds under tropical conditions. Anim. Feed Sci. Technol. 143:127-147. https://doi.org/10.1016/j.anifeedsci.2007.05.008
  13. Doyle, P. T., C. R. Stockdale, N. X. Ba, N. H. Van and L. D. Ngoan. 2008. Understanding interactions between forages and concentrates is important for formulating feeding strategies for growing cattle in central Vietnam. Aust. J. Exp. Agric. 48:821-824. https://doi.org/10.1071/EA07417
  14. Du, J., Y. Liang, H. Xin, F. Xue, J. Zhao, L. Ren and Q. Meng. 2010. Evaluation of dry matter intake and average daily gain predicted by the Cornell Net Cabohydrate and Protein System in crossbred growing bulls kept in a traditionally confined feeding system in China. Asian-Aust. J. Anim. Sci. 23:1445-1454. https://doi.org/10.5713/ajas.2010.10055
  15. Ellis, W. C., J. H. Matis, T. M. Hill and M. R. Murphy. 1994. Methodology for estimating digestion and passage kinetics of forages. In: Forage quality, evaluation, and utilization (Ed. G. C. Fahey Jr., M. Collins, D. R. Mertens and L. E. Moser). American Society of Agronomy, Madison, WI. pp. 682-756.
  16. Fernandes, H. J., L. O. Tedeschi, M. F. Paulino and L. M. Paiva. 2010. Determination of carcass and body fat compositions of grazing crossbred bulls using body measurements. J. Anim. Sci. 88:1442-1453. https://doi.org/10.2527/jas.2009-1919
  17. Fox, D. G., L. O. Tedeschi, T. P. Tylutki, J. B. Russell, M. E. Van Amburgh, L. E. Chase, A. N. Pell and T. R. Overton. 2004. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 112:29-78. https://doi.org/10.1016/j.anifeedsci.2003.10.006
  18. General Statistics Office. 2010. Statistical yearbook of Vietnam 2009. Statistical Publishing House, Hanoi, Vietnam.
  19. Guiroy, P. J., D. G. Fox, L. O. Tedeschi, M. J. Baker and M. D. Cravey. 2001. Predicting individual feed requirements of cattle fed in groups. J. Anim. Sci. 79:1983-1995.
  20. Harmon, D. L. 2009. Understanding starch utilization in the small intestine of cattle. Asian-Aust. J. Anim. Sci. 22:915-922. https://doi.org/10.5713/ajas.2009.r.08
  21. Johnson, H., R. Butterfield and W. Pryor. 1972. Studies of fat distribution in the bovine carcass: 1. The partition of fatty tissues between depots. Aust. J. Agric. Res. 23:381-388. https://doi.org/10.1071/AR9720381
  22. Jones, S. D. M., M. A. Price and R. T. Berg. 1980. Fattening patterns in cattle: 2. Fat distribution among the wholesale cuts. Can. J. Anim. Sci. 60:851-856. https://doi.org/10.4141/cjas80-100
  23. Licitra, G., T. M. Hernandez and P. J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358. https://doi.org/10.1016/0377-8401(95)00837-3
  24. McPhee, M. J., J. W. Oltjen, J. G. Fadel, D. Perry and R. D. Sainz. 2008. Development and evaluation of empirical equations to interconvert between twelfth-rib fat and kidney, pelvic, and heart fat respective fat weights and to predict initial conditions of fat deposition models for beef cattle. J. Anim Sci. 86:1984-1995. https://doi.org/10.2527/jas.2008-0840
  25. Mertens, D. R. 1997. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 80:1463-1481. https://doi.org/10.3168/jds.S0022-0302(97)76075-2
  26. National Research Council. 2000. Nutrient requirements of beef cattle. 7th edn. National Academy Press, Washington, DC, USA.
  27. Offer, N. W. and J. Dixon. 2000. Factors affecting outflow rate from the reticulo-rumen. Nutrition Abstracts and Reviews. Series B: Livestock Feeds and Feeding 70:833-844.
  28. Tedeschi, L. O. 2006. Assessment of the adequacy of mathematical models. Agric. Syst. 89:225-247. https://doi.org/10.1016/j.agsy.2005.11.004
  29. Tedeschi, L. O., D. G. Fox and J. B. Russell. 2000. Accounting for the effects of a ruminal nitrogen deficiency within the structure of the Cornell net carbohydrate and protein system. J. Anim. Sci. 78:1648-1658.
  30. Tedeschi, L. O., D. G. Fox and P. J. Guiroy. 2004. A decision support system to improve individual cattle management. 1. A mechanistic, dynamic model for animal growth. Agric. Syst. 79:171-204. https://doi.org/10.1016/S0308-521X(03)00070-2
  31. Tedeschi, L. O., D. G. Fox and P. H. Doane. 2005a. Evaluation of the tabular feed energy and protein undegradability values of the National Research Council nutrient requirements of beef cattle. Prof. Anim. Scient. 21:403-415.
  32. Tedeschi, L. O., D. G. Fox, G. E. Carstens and C. L. Ferrell. 2010. The partial efficiency of use of metabolizable energy to net energy for growth in ruminants. In: 3rd International Symposium on Energy and Protein Metabolism and Nutrition (Ed. G. M. Crovetto), Wageningen Academic Publishers. pp. 519-529.
  33. Tedeschi, L. O., D. G. Fox, A. N. Pell, D. P. D. Lanna and C. Boin. 2002. Development and evaluation of a tropical feed library for the Cornell Net Carbohydrate and Protein System model. Scientia Agricola. 59:1-18.
  34. Tedeschi, L. O., D. G. Fox, R. D. Sainz, L. G. Barioni, S. R. Medeiros and C. Boin. 2005b. Using mathematical models in ruminant nutrition. Scientia Agricola. 62:76-91. https://doi.org/10.1590/S0103-90162005000100015
  35. Tylutki, T. P., D. G. Fox and R. G. Anrique. 1994. Predicting net energy and protein requirements for growth of implanted and nonimplanted heifers and steers and nonimplanted bulls varying in body size. J. Anim. Sci. 72:1806-1813.
  36. Van, N. H., N. H. Nguyen and N. X. Ba. 2012. Study on utilization of high protein concentrates for Brahman crossed beef during fattening period. Hue University Journal of Science 71:319-332.
  37. Van, N. H., N. X. Ba, L. D. Ngoan and P. T. Doyle. 2008. On-farm testing of supplementary feeding strategies for cattle finishing in Vietnam., Proceedings of the XIII AAAP Animal Science Congress. Animal Husbandry Association of Vietnam (AHAV). p. 70.
  38. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  39. Vieira, R. A. M., L. O. Tedeschi and A. Cannas. 2008a. A generalized compartmental model to estimate the fibre mass in the ruminoreticulum: 1. Estimating parameters of digestion. J. Theor. Biol. 255:345-356. https://doi.org/10.1016/j.jtbi.2008.08.014
  40. Vieira, R. A. M., L. O. Tedeschi and A. Cannas. 2008b. A generalized compartmental model to estimate the fibre mass in the ruminoreticulum: 2. Integrating digestion and passage. J. Theor. Biol. 255:357-368. https://doi.org/10.1016/j.jtbi.2008.08.013
  41. Von, N. T., N. H. Van, N. X. Ba, T. N. Ai and D. T. Huong. 2009. The results of an investigation of current situation of cattle production in Quang Tri province. Journal of Agriculture and Rural Development 3:72-75.
  42. Wang, Y. H., N. I. Bower, A. Reverter, S. H. Tan, N. De Jager, R. Wang, S. M. McWilliam, L. M. Cafe, P. L. Greenwood and S. A. Lehnert. 2009. Gene expression patterns during intramuscular fat development in cattle. J. Anim Sci. 87:119-130.
  43. Weiss, W. P. 1993. Predicting energy values of feeds. J. Dairy Sci. 76:1802-1811. https://doi.org/10.3168/jds.S0022-0302(93)77512-8
  44. Weiss, W. P., H. R. Conrad and N. R. St. Pierre. 1992. A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Anim. Feed Sci. Technol. 39:95-110. https://doi.org/10.1016/0377-8401(92)90034-4
  45. Zebeli, Q., M. Tafaj, H. Steingass, B. Metzler and W. Drochner. 2006. Effects of physically effective fiber on digestive processes and milk fat content in early lactating dairy cows fed total mixed rations. J. Dairy Sci. 89:651-668. https://doi.org/10.3168/jds.S0022-0302(06)72129-4
  46. Zhao, J. S., Z. M. Zhou, L. P. Ren, Y. Q. Xiong, J. P. Du and Q. X. Meng. 2008. Evaluation of dry matter intake and daily weight gain predictions of the Cornell Net Carbohydrate and Protein System with local breeds of beef cattle in China. Anim. Feed Sci. Technol. 142:231-246. https://doi.org/10.1016/j.anifeedsci.2007.08.008