DOI QR코드

DOI QR Code

RNA Interference as a Plausible Anticancer Therapeutic Tool

  • Ramachandran, Puthucode Venkatakrishnan (Entomology Research Institute, Loyola College) ;
  • Ignacimuthu, Savarimuthu (Entomology Research Institute, Loyola College)
  • Published : 2012.06.30

Abstract

RNA interference has created a breakthrough in gene silencing technology and there is now much debate on the successful usage of RNAi based methods in treating a number of debilitating diseases. Cancer is often regarded as a result of mutations in genomic DNA resulting in faulty gene expression. The occurrence of cancer can also be influenced by epigenetic irregularities in the chromatin structure which leads to alterations and mutations in DNA resulting in cancer cell formation. A number of therapeutic approaches have been put forth to treat cancer. Anti cancer therapy often involves chemotherapy targeting all the cells in common, whereby both cancer cells as well as normal cells get affected. Hence RNAi technology has potential to be a better therapeutic agent as it is possible to deactivate molecular targets like specific mutant genes. This review highlights the successful use of RNAi inducers against different types of cancer, thereby paving the way for specific therapeutic medicines.

Keywords

siRNA treatment;miRNA;lung cancer;liver cancer;gynecologic cancers;urologic cancers

References

  1. Ahlquist P (2002). RNA-dependent RNA polymerases, viruses and RNA silencing. Science, 296, 1270-3. https://doi.org/10.1126/science.1069132
  2. Arbuthnot P, Longshaw V, Naidoo T, Weinberg MS (2007). Opportunities for treating chronic hepatitis B and C virus infection using RNA interference. J Viral Hepat, 14, 447-59. https://doi.org/10.1111/j.1365-2893.2006.00818.x
  3. Bahi A, Boyer F, Kolira M, Dreyer JL (2005). In vivo gene silencing of CD81 by lentiviral expression of small interference RNAs suppresses cocaine-induced behaviour. J Neurochem, 92, 1243-55. https://doi.org/10.1111/j.1471-4159.2004.02961.x
  4. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363-6. https://doi.org/10.1038/35053110
  5. Bisanz K, Yu J, Edlund M, et al (2005). Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model. Mol Ther, 12, 634-43. https://doi.org/10.1016/j.ymthe.2005.05.012
  6. Brummelkamp TR, Bernards R, Agami R (2002a). A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550-3. https://doi.org/10.1126/science.1068999
  7. Brummelkamp TR, Bernards R, Agami R (2002b). Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2, 243-7. https://doi.org/10.1016/S1535-6108(02)00122-8
  8. Caldas H, Holloway MP, Hall BM, Qualman SJ, Altura RA (2006). Survivin-directed RNA interference cocktail is a potent suppressor of tumour growth in vivo. J Med Genet, 43, 119-28.
  9. Calin GA, Dumitru CD, Shimizu M, et al (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukaemia. Proc Natl Acad Sci USA, 99, 15524-29. https://doi.org/10.1073/pnas.242606799
  10. Calin GA, Sevignani C, Dumitru, CD, et al (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA, 101, 2999-3004. https://doi.org/10.1073/pnas.0307323101
  11. Chan JA, Krichevsky AM, Kosik KS (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res, 65, 6029-33. https://doi.org/10.1158/0008-5472.CAN-05-0137
  12. Cheng AM, Byrom MW, Shelton J, Ford LP (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res, 33, 1290-7. https://doi.org/10.1093/nar/gki200
  13. Chien PY, Wang J, Carbonaro D, et al (2005). Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther, 12, 321-8. https://doi.org/10.1038/sj.cgt.7700793
  14. Cory S, Adams JM (2005). Killing cancer cells by flipping the Bcl-2/Bax switch. Cancer Cell, 8, 5-6. https://doi.org/10.1016/j.ccr.2005.06.012
  15. Danilin S, Sourbier C, Thomas L, et al (2010). Role of the RNA-binding protein HuR in human renal cell carcinoma. Carcinogenesis, 31, 1018-26. https://doi.org/10.1093/carcin/bgq052
  16. Dittgen T, Nimmerjahn A, Komai S, et al (2004). Lentivirusbased genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci USA, 101, 18206-11. https://doi.org/10.1073/pnas.0407976101
  17. Eckerdt F, Yuan J, Strebhardt K (2005). Polo-like kinases and oncogenesis. Oncogene, 24, 267-76. https://doi.org/10.1038/sj.onc.1208273
  18. Eis PS, Tam W, Sun L, et al (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA, 102, 3627-32. https://doi.org/10.1073/pnas.0500613102
  19. Fu GF, Lin XH, Han QW (2005). RNA interference remarkably suppresses bcl-2 gene expression in cancer cells in vitro and in vivo. Cancer Biol Ther, 4, 822-9. https://doi.org/10.4161/cbt.4.8.1889
  20. Fujii T, Saito M, Iwasaki E, et al (2006). Intratumor injection of small interfering RNA- targeting human papillomavirus 18 E6 and E7 successfully inhibits the growth of cervical cancer. Int J Oncol, 29, 541-8.
  21. Gagnon V, Mathieu I, Sexton E, Leblanc K, Asselin E (2004). AKT involvement in cisplatin chemoresistance of human uterine cancer cells. Gynecol Oncol, 94, 785-95. https://doi.org/10.1016/j.ygyno.2004.06.023
  22. Gao LF, Xu DQ, Wen LJ, et al (2005). Inhibition of STAT3 expression by siRNA suppresses growth and induces apoptosis in laryngeal cancer cells. Acta Pharmacol. Sin, 26, 377-83. https://doi.org/10.1111/j.1745-7254.2005.00053.x
  23. Green VA, Weinberg MS (2011). Small RNA-induced transcriptional gene regulation in mammals: mechanisms, therapeutic applications, and scope within the genome. Prog Mol Biol Transl Sci, 102, 11-46. https://doi.org/10.1016/B978-0-12-415795-8.00005-2
  24. Hamilton AJ, Baulcombe DC (1999). A species of small antisense RNA in post transcriptional gene silencing in plants. Science, 286, 950-2. https://doi.org/10.1126/science.286.5441.950
  25. Hemann MT, Fridman JS, Zilfou JT, et al (2003). An Epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet, 33, 396-400. https://doi.org/10.1038/ng1091
  26. Hosono T, Mizuguchi H, Katayama K, et al (2005). RNA interference of PPARgamma using fiber-modified adenovirus vector efficiently suppresses preadipocyte-to-adipocyte differentiation in 3T3-L1 cells. Gene, 348, 157-65. https://doi.org/10.1016/j.gene.2005.01.005
  27. Howard BA, Furumai R, Campa MJ, et al (2005). Stable RNA interference-mediated suppression of cyclophilin A diminishes non-small-cell lung tumor growth in vivo. Cancer Res, 65, 8853-60. https://doi.org/10.1158/0008-5472.CAN-05-1219
  28. Hua J, Mutch DG, Herzog TJ (2005). Stable suppression of MDR-1 gene using siRNA expression vector to reverse drug resistance in a human uterine sarcoma cell line. Gynecol Oncol, 98, 31-8. https://doi.org/10.1016/j.ygyno.2005.03.042
  29. Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ (2005). Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res, 65, 8984-92. https://doi.org/10.1158/0008-5472.CAN-05-0565
  30. Hutvagner G ( 2005). Small RNA asymmetry in RNAi: Function in RISC assembly and gene regulation. FEBS Lett, 579, 5850-7. https://doi.org/10.1016/j.febslet.2005.08.071
  31. Iorio MV, Ferracin M, Liu CG, et al (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65, 7065-70. https://doi.org/10.1158/0008-5472.CAN-05-1783
  32. Jemal A, Siegel R, Xu J, Ward E (2010). Cancer statistics. Cancer J Clin, 60, 277-300. https://doi.org/10.3322/caac.20073
  33. Jiang M, Milner J (2005). Selective silencing of viral gene E6 and E7 expression in HPV-positive human cervical carcinoma cells using small interfering RNAs. Methods Mol Biol, 292, 401-20.
  34. July LV, Beraldi E, So A, et al (2004). Nucleotide-based therapies targeting clusterin chemosensitize human lung adenocarcinoma cells both in vitro and in vivo. Mol Cancer Ther, 3, 223-32. https://doi.org/10.4161/cbt.3.2.775
  35. Karasarides M, Chiloeches A, Hayward R, et al (2004). B-RAF is a therapeutic target in melanoma. Oncogene, 23, 6292-8. https://doi.org/10.1038/sj.onc.1207785
  36. Kim PJ, Plescia J, Clevers H, Fearon ER, Altieri DC (2003). Survivin and molecular pathogenesis of colorectal cancer. Lancet, 362, 205-9. https://doi.org/10.1016/S0140-6736(03)13910-4
  37. Kim VN (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev Mol Cell Biol, 6, 376-85. https://doi.org/10.1038/nrm1644
  38. Kluiver J, Poppema S, De Jong D, et al (2005). BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol, 207, 243-9. https://doi.org/10.1002/path.1825
  39. Ku JH, Seo SY, Kwak C, et al (2010). Cytotoxicity and apoptosis by survivin small interfering RNA in bladder cancer cells. BJU Int, 106, 1812-6. https://doi.org/10.1111/j.1464-410X.2010.09259.x
  40. Kunze D, Wuttig D, Fuessel S, et al (2008). Multitarget siRNA inhibition of antiapoptotic genes (XIAP, BCL2, BCL-X(L)) in bladder cancer cells. Anticancer Res, 28, 2259-63.
  41. Lapteva N, Yang AG, Sanders DE, Strube RW, Chen SY (2004). CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther, 12, 84-9.
  42. Lee NS, Dohjima T, Bauer G, et al (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol, 20, 500-5.
  43. Lee SO, Lou W, Qureshi KM, et al (2004). RNA interference targeting Stat3 inhibits growth and induces apoptosis of human prostate cancer cells. Prostate, 60, 303-9. https://doi.org/10.1002/pros.20072
  44. Li H, Fu X, Chen Y, et al (2005a). Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology, 128, 2029-41. https://doi.org/10.1053/j.gastro.2005.03.001
  45. Li S, Crothers J, Haqq CM, Blackburn EH (2005b). Cellular and gene expression responses involved in the rapid growth inhibition of human cancer cells by RNA interferencemediated depletion of telomerase RNA. J Biol Chem, 280, 23709-17. https://doi.org/10.1074/jbc.M502782200
  46. Li SD, Chen YC, Hackett MJ, Huang L (2008). Tumor-targeted delivery of siRNA by self assembled nanoparticles, Mol Ther, 16, 163-69. https://doi.org/10.1038/sj.mt.6300323
  47. Li SD, Huang L (2006). Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol Pharm, 3, 579-88. https://doi.org/10.1021/mp060039w
  48. Lima RT, Martins LM, Guimaraes JE, Sambade C, Vasconcelos MH (2004). Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther, 11, 309-16. https://doi.org/10.1038/sj.cgt.7700706
  49. Ling X, Li F (2004). Silencing of antiapoptotic survivin gene by multiple approaches of RNA interference technology. Biotechniques, 36, 450-60.
  50. McNamara II JO, Andrechek ER, Wang Y, et al (2006). Cell typespecific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol, 24, 1005-15. https://doi.org/10.1038/nbt1223
  51. Meryet-Figuières M, Resina S, Lavigne C, et al (2007). Inhibition of PAI-1 expression in breast cancer carcinoma cells by siRNA at nanomolar range. Biochimie, 89, 1228-33. https://doi.org/10.1016/j.biochi.2007.03.017
  52. Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A (2004). High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer, 39, 167-9. https://doi.org/10.1002/gcc.10316
  53. Miyamoto S, Hirata M, Yamazaki A, et al (2004). Heparinbinding EGF-like growth factor is a promising target for ovarian cancer therapy. Cancer Res, 64, 5720-7. https://doi.org/10.1158/0008-5472.CAN-04-0811
  54. Morrissey DV, Blanchard K, Shaw L, et al (2005). Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology, 41, 1349-56. https://doi.org/10.1002/hep.20702
  55. Osada H, Tatematsu Y, Yatabe Y, Horio Y, Takahashi T (2005). ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Res, 65, 10680-85. https://doi.org/10.1158/0008-5472.CAN-05-1404
  56. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002). Short hairpin RNAs (shRNAs) induce sequencespecific silencing in mammalian cells. Genes Dev, 16, 948-58. https://doi.org/10.1101/gad.981002
  57. Pal A, Ahmad A, Khan S, et al (2005). Systemic delivery of Raf siRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer. Int J Oncol, 26, 1087-91.
  58. Paul CP, Good PD, Winer I, Engelke DR (2002). Effective expression of small interfering RNA in human cells. Nat Biotechnol, 20, 505-8. https://doi.org/10.1038/nbt0502-505
  59. Pichler A, Zelcer N, Prior JL, Kuil AJ, Piwnica-Worms D (2005). In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein. Clin Cancer Res, 11, 4487-94. https://doi.org/10.1158/1078-0432.CCR-05-0038
  60. Ragozin S, Niemeier A, Laatsch A, et al (2005). Knockdown of hepatic ABCA1 by RNA interference decreases plasma HDL cholesterol levels and influences postprandial lipemia in mice. Arterioscler Thromb Vasc Biol, 25, 1433-8. https://doi.org/10.1161/01.ATV.0000166616.86723.d0
  61. Rochester MA, Riedemann J, Hellawell GO, et al (2005). Silencing of the IGF1R gene enhances sensitivity to DNAdamaging agents in both PTEN wild-type and mutant human prostate cancer. Cancer Gene Ther, 12, 90-100. https://doi.org/10.1038/sj.cgt.7700775
  62. Ronkainen H, Vaarala MH, Hirvikoski P, Ristimaki A (2011). HuR expression is a marker of poor prognosis in renal cell carcinoma. Tumour Biol, 32, 481-7. https://doi.org/10.1007/s13277-010-0141-6
  63. Scherr M, Battmer K, Schultheis B, Ganser A, Eder M (2005). Stable RNA interference (RNAi) as an option for anti-bcr-abl therapy. Gene Ther, 12, 12-21. https://doi.org/10.1038/sj.gt.3302328
  64. Sioud M, Sorensen DR (2003). Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun, 312, 1220-5. https://doi.org/10.1016/j.bbrc.2003.11.057
  65. Song E, Zhu P, Lee SK, et al (2005). Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol, 23,709-17. https://doi.org/10.1038/nbt1101
  66. Sorensen DR, Leirdal M, Sioud M (2003). Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol, 327, 761-6. https://doi.org/10.1016/S0022-2836(03)00181-5
  67. Soutschek J, Akinc A, Bramlage B, et al (2004). Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 432, 173-8. https://doi.org/10.1038/nature03121
  68. Sui G, Soohoo C, Affarel B, et al (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA, 99, 5515-20. https://doi.org/10.1073/pnas.082117599
  69. Sutton D, Kim S, Shuai X, et al (2006). Efficient suppression of secretory clusterin levels by polymer-siRNA nanocomplexes enhances ionizing radiation lethality in human MCF-7 breast cancer cells in vitro. Int J Nanomedicine, 1, 155-62. https://doi.org/10.2147/nano.2006.1.2.155
  70. Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T (2004). A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res, 64, 3365-70. https://doi.org/10.1158/0008-5472.CAN-03-2682
  71. Tan WB, Jiang SY, Zhang Y (2007). Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 28, 1565-71. https://doi.org/10.1016/j.biomaterials.2006.11.018
  72. Valdehita A, Carmena MJ, Bajo AM, Prieto JC (2012). RNA interference-directed silencing of VPAC1 receptor inhibits VIP effects on both EGFR and HER2 transactivation and VEGF secretion in human breast cancer cells. Mol Cell Endocrinol, 348, 241-6. https://doi.org/10.1016/j.mce.2011.08.031
  73. Wang Y, Gao S, Ye WH, Yoon HS, Yang YY (2006). Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer, Nat Mater, 5, 791-6. https://doi.org/10.1038/nmat1737
  74. Wang Y, Zhu H, Quan L (2005). Downregulation of survivin by RNAi inhibits the growth of esophageal carcinoma cells. Cancer Biol Ther, 4, 974-8. https://doi.org/10.4161/cbt.4.9.1914
  75. Wang ZX, Dong X, Liu ZL, et al (2012). Overexpression of polo-like kinase 1 and its clinical significance in human nonsmall cell lung cancer. Int J Biochem Cell Biol, 44, 200-10. https://doi.org/10.1016/j.biocel.2011.10.017
  76. Wilda M, Fuchs U, Wossmann W, Borkhardt A (2002). Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene, 21, 5716-24. https://doi.org/10.1038/sj.onc.1205653
  77. Withey JM, Marley SB, Kaeda J (2005). Targeting primary human leukaemia cells with RNA interference: Bcr-Abl targeting inhibits myeloid progenitor self-renewal in chronic myeloid leukaemia cells. Br J Haematol, 129, 377-80. https://doi.org/10.1111/j.1365-2141.2005.05468.x
  78. Wohlbold L, Van der Kuip H, Miething C, et al (2003). Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood, 102, 2236-9. https://doi.org/10.1182/blood-2002-12-3899
  79. Xu CX, Jere D, Jin H, et al (2008). Poly (ester amine)-mediated, aerosol delivered Akt1 small interfering RNA suppresses lung tumorigenesis. Am J Respir Crit Care Med, 178, 60-73. https://doi.org/10.1164/rccm.200707-1022OC
  80. Yang G, Cai KQ, Thompson-Lanza JA, Bast Jr RC, Liu J (2004). Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem, 279, 4339-45.
  81. Yano J, Hirabayashi K, Nakagawa S, et al (2004). Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin. Cancer Res, 10, 7721-6. https://doi.org/10.1158/1078-0432.CCR-04-1049
  82. Yoshinouchi M, Yamada T, Kizaki M, et al (2003). In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther, 8, 762- 8. https://doi.org/10.1016/j.ymthe.2003.08.004
  83. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25-33. https://doi.org/10.1016/S0092-8674(00)80620-0
  84. Zeng Y, Yi R, Cullen B (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J, 24, 138-48. https://doi.org/10.1038/sj.emboj.7600491
  85. Zhang A, Liu Y, Shen Y, et al (2010). Osteopontin silencing by small interfering RNA induces apoptosis and suppresses invasion in human renal carcinoma Caki-1 cells. Med Oncol, 27, 1179-84. https://doi.org/10.1007/s12032-009-9356-z
  86. Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004). Single processing center models for human Dicer and bacterial RNase III. Cell, 118, 57-68. https://doi.org/10.1016/j.cell.2004.06.017
  87. Zhang T, Guan M, Jin H, Lu Y (2005). Reversal of multidrug resistance by small interfering double-stranded RNAs in ovarian cancer cells. Gynecol Oncol, 97, 501- 7. https://doi.org/10.1016/j.ygyno.2005.01.027

Cited by

  1. The role of the CXCR4 cell surface chemokine receptor in glioma biology vol.113, pp.2, 2013, https://doi.org/10.1007/s11060-013-1108-4
  2. Enhanced Inhibition of Bladder Cancer Cell Growth by Simultaneous Knockdown of Antiapoptotic Bcl-xL and Survivin in Combination with Chemotherapy vol.14, pp.6, 2013, https://doi.org/10.3390/ijms140612297
  3. Down-Regulation of Mcl-1 by Small Interference RNA Induces Apoptosis and Sensitizes HL-60 Leukemia Cells to Etoposide vol.15, pp.2, 2014, https://doi.org/10.7314/APJCP.2014.15.2.629
  4. MiR-130a Overcomes Gefitinib Resistance by Targeting Met in Non-Small Cell Lung Cancer Cell Lines vol.15, pp.3, 2014, https://doi.org/10.7314/APJCP.2014.15.3.1391
  5. Overcoming obstacles in microRNA delivery towards improved cancer therapy vol.4, pp.1, 2014, https://doi.org/10.1007/s13346-013-0160-0
  6. Knockdown of hTERT by siRNA inhibits cervical cancer cell growth in vitro and in vivo vol.45, pp.3, 2014, https://doi.org/10.3892/ijo.2014.2493
  7. The role of CXCR4 in highly malignant human gliomas biology: Current knowledge and future directions vol.62, pp.7, 2014, https://doi.org/10.1002/glia.22669
  8. RNAi-based Knockdown of Multidrug Resistance-associated Protein 1 is Sufficient to Reverse Multidrug Resistance of Human Lung Cells vol.15, pp.24, 2015, https://doi.org/10.7314/APJCP.2014.15.24.10597
  9. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-19463-2